Abstract: The mini-course is an introductory and self-contained approach to the method of intrinsic scaling, aiming at bringing to light what is really essential in this powerful tool in the analysis of degenerate and singular equations. The theory is presented from scratch for the simplest model case of the degenerate p-Laplace equation, leaving aside
technical renements needed to deal with more general situations. A striking feature of the method is its pervasiveness in terms of the applications and I hope to convince the audience of its strength as a systematic approach to regularity for an important and relevant class of nonlinear partial dierential equations. I will extensively follow my book
14 , with complements and extensions from a variety of sources (listed in the references), mainly
6,7,17

10/16()09:00 11:00 Lecture I.
An impressionist history lesson: from Hilbert's 19th problem to DeGiorgi-Nash-Moser theory; the quasilinear case { contributions from the Russian school; enters DiBenedetto { the method of intrinsic scaling.

10/17()09:00- 11:00 Lecture II.
The building blocks of the theory: local energy and logarithmic estimates. The geometric setting and an alternative.

10/19()09:00 -11:00 Lecture III.
The rst alternative: getting started; expansion in time and the role of the logarithmic estimates; reduction of the oscillation.

10/22()09:00 -11:00 Lecture IV.
Towards the Holder continuity: the second alternative; the recursive argument.

10/23()09:00 -11:00 Lecture V.
The singular case and further generalisations: immiscible uids and chemotaxis; phase transitions.
제목
2015-01-12  14:00-15:30  Pierre Deligne and the Weil conjectures Luc Illusie  27-220 
2015-01-14  14:00-15:30  Pierre Deligne and the Weil conjectures Luc Illusie  27-220 
2016-03-09  16:00-17:00  Linear parabolic boundary-value problems in generalized Morrey spaces Lubomira G. Softova  27-325 
2018-05-28  13:30-15:30  Perversely categorified Lagrangian correspondences Lino Amorim  27-325 
2018-05-29  16:00-18:00  Categorical Gromov-Witten Invariants Lino Amorim  129-104 
2015-05-26  15:00-17:00  Regularity for elliptic and parabolic equations Lihe Wang  27-325 
2015-05-27  15:00-17:00  Regularity for elliptic and parabolic equations Lihe Wang  27-325 
2015-05-28  15:00-17:00  Regularity for elliptic and parabolic equations Lihe Wang  27-325 
2015-05-29  09:00-11:00  Regularity for elliptic and parabolic equations Lihe Wang  27-116 
2016-05-17  14:00-17:00  Fully Nonlinear Elliptic Equations Lihe Wang  129-406 
2016-05-18  14:00-17:00  Regualarity Theory for Elliptic and Parabolic Equations Lihe Wang  129-406 
2017-01-05  10:00-12:00  Regularity theory for elliptic equations Lihe Wang  27-325 
2017-01-05  16:00-18:00  Regularity theory for parabolic equations Lihe Wang  27-325 
2017-04-20  16:00-18:00  편미분방정식 초청강연 Lihe Wang  129-301 
2018-05-21  15:00-16:00  Liouville type theorems in cylinders Lihe Wang  129-301 
2019-06-20  15:00-18:00  Regularity theory for elliptic and parabolic equations in non-divergence form Lihe Wang  27-116 
2019-06-21  10:00-12:00  Regularity theory for elliptic and parabolic equations in non-divergence form Lihe Wang  27-116 
2019-06-19  17:00-18:00  Regularity theory for elliptic and parabolic equations in non-divergence form Lihe Wang  27-116 
2019-06-20  10:00-12:00  Regularity theory for elliptic and parabolic equations in non-divergence form Lihe Wang  27-116 
2019-06-21  14:00-16:00  Regularity theory for elliptic and parabolic equations in non-divergence form Lihe Wang  27-116