https://www.math.snu.ac.kr/board/files/attach/images/698/d7f811aae9dfd8ef6b3d16c547a28844.png
seminars
Subject
Aug 29, 2023  13:30-15:00  Upper Bound of the Quantitative Oppenheim Conjecture 강민찬  129-301 
Aug 28, 2023  15:00-17:00  From Babylonian lunar observations to global surfaces of section Urs Frauenfelder  129-406 
Aug 25, 2023  15:00-17:00  On the prime Selmer ranks of cyclic prime twist families of elliptic curves over global function fields 박선우  129-104 
Aug 25, 2023  14:00-16:00  Quantum-inspired algorithms for estimating matrix functions 임영롱  선택 
Aug 23, 2023  14:00-17:00  Gromov-Witten invariants and mirror symmetry 오정석  129-104 
Aug 22, 2023  14:00-17:00  Gromov-Witten invariants and mirror symmetry 오정석  129-104 
Aug 21, 2023  14:00-17:00  Gromov-Witten invariants and mirror symmetry 오정석  129-104 
Aug 17, 2023  16:00-18:00  Spectral numbers in Tate Rabinowitz Floer Homology 2 Urs Frauenfelder  129-104 
Aug 17, 2023  15:00-16:00  Calderon-Zygmund estimates for the fractional p-Laplacian Lars Diening  27-325 
Aug 17, 2023  16:00-17:00  Lavrentiev gap for nonlocal and mixed double-phase problems Anna Kh.Balci  27-325 
Aug 17, 2023  17:00-18:00  Lavrentiev gap for nonlocal and mixed double-phase problems Anna Kh.Balci  27-325 
Aug 17, 2023  14:30-16:00  Symplectic Torelli classes of positive entropy 김준태  129-104 
Aug 16, 2023  15:00-18:00  KAM theory in active scalar equations, II Jaemin Park  129-104 
Aug 14, 2023  15:00-18:00  KAM theory in active scalar equations I Jaemin Park  129-104 
Aug 14, 2023  13:00-15:00  A uniform bound for solutions to a thermo-diffusive system 라준현  129-104 
Aug 14, 2023  16:00-18:00  Everywhere and partial regularity for parabolic systems with general growth file 옥지훈  27-325 
Aug 11, 2023  16:00-18:00  Spectral numbers in Tate Rabinowitz Floer Homology 1 Urs Frauenfelder  129-104 
Aug 11, 2023  14:00-16:00  Unconventional Tissue-Interfacing Bioelectronics 손동희  선택 
Aug 10, 2023  16:00-17:00  Analytic approach to the double-phase systems 김원태  27-325 
Aug 09, 2023  16:00-18:00  Euclidean algorithms are Gaussian over imaginary quadratic fields 이정원  129-301