Abstract: Let G be the isometry group of (d+1)-dimensional hyperbolic space. A subgroup H of G is quasi-Fuchsian if H is a convex cocompact discrete subgroup of G and the limit set of H is homeomorphic to the (d-1)-dimensional sphere. In this talk, I will explain how to construct examples of quasi-Fuchsian groups of G which are not quasi-isometric to the hyperbolic d-space using the Tits-Vinberg representation of Coxeter groups.  Joint work with Ludovic Marquis.