We consider the problem of identifying the material properties from boundary measurements. For the conductivity case, this is known as Calderon problem: “Is it possible to determine the electrical conductivity inside a domain from the bounda...
There are basically two approaches for solving linear systems: one is to exactly solve the linear sytem such as Gaussian-elimination. The other approximates the solution in the Krylov spaces; Conjugate-gradient and General minimum residual m...
Spectral Analysis for the Anomalous Localized Resonance by Plasmonic Structures
We present a mathematical justification of cloaking due to anomalous localized resonance (CALR). We consider the dielectric problem with a source term in a structure with a layer of plasmonic material. Using layer potentials and symmetrizati...
In this talk, we briefly introduce how a combinatorial object, Integer partition, is related with number theoretic subjects : q-series and modular forms. In particular, we will focus on (1) combinatorial proof for q-series identities (2) ari...
Root multiplicities of hyperbolic Kac-Moody algebras and Fourier coefficients of modular forms
In this talk, we will consider the hyperbolic Kac-Moody algebra associated to a certain rank 3 Cartan matrix and generalized Kac-Moody algebras that contain the hyperbolic Kac-Moody algebra. The denominator funtions of the generalized Kac-Mo...
A new view of Fokker-Planck equations in finite and Infinite dimensional spaces
Fokker-Planck and Kolmogorov (backward) equations can be interpreted as linearisations of the underlying stochastic differential equations (SDE). It turns out that, in particular, on infinite dimensional spaces (i.e. for example if the SDE i...
The spaces admitting a rational parameterization are called rational. In particular plane conics, including circles, are rational. We will explain a few interesting applications of the rational parameterization of a circle. Also several exam...
Noncommutative Geometry. Quantum Space-Time and Diffeomorphism Invariant Geometry
A general goal of noncommutative geometry (in the sense of A. Connes) is to translate the main tools of differential geometry into the Hilbert space formalism of quantum mechanics by taking advantage of the familiar duality between spaces an...
The Mathematics of the Bose Gas and its Condensation
Since Bose and Einstein discovered the condensation of Bose gas, which we now call Bose-Einstein condensation, its mathematical properties have been of great importance for mathematical physics. Recently, many rigorous results have been obta...
We proved the codimension three conjecture that says the micro-local perverse sheaves extend if it is defined outside odimension three (counting from Lagrangian subvarity). It is a joint work with Kari Vilonen.
We start with the famous Heisenberg uncertainty principle to give the idea of the probability in quantum mechanics. The Heisenberg uncertainty principle states by precise inequalities that the product of uncertainties of two physical quantit...