https://www.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
Extra Form
Lecturer Narutaka Ozawa
Dept. RIMS
date Oct 31, 2013

I will talk on Cannes's Embedding Conjecture, which is considered as one of the most important open problems in the field of operator algebras. It asserts that every finite von Neumann algebra is approximable by matrix algebras in suitable sense. It turns out, most notably by Kirchberg, that Cannes's Embedding Conjecture is equivalent to surprisingly
many other important conjectures which touches almost all the subfields of operator algebras and also to other branches of mathematics such as quantum information theory and noncommutative real algebraic geometry.

Atachment
Attachment '1'
  1. Existence of positive solutions for φ-Laplacian systems

  2. Essential dimension of simple algebras

  3. Equations defining algebraic curves and their tangent and secant varieties

  4. Entropy of symplectic automorphisms

  5. Entropies on covers of compact manifolds

  6. Elliptic equations with singular drifts in critical spaces

  7. Diophantine equations and moduli spaces with nonlinear symmetry

  8. Descent in derived algebraic geometry

  9. Deformation spaces of Kleinian groups and beyond

  10. Creation of concepts for prediction models and quantitative trading

  11. Counting number fields and its applications

  12. Counting circles in Apollonian circle packings and beyond

  13. Convex and non-convex optimization methods in image processing

  14. Contact topology of singularities and symplectic fillings

  15. Contact instantons and entanglement of Legendrian links

  16. Contact Homology and Constructions of Contact Manifolds

  17. Conservation laws and differential geometry

  18. 07Nov
    by Editor
    in Math Colloquia

    Connes's Embedding Conjecture and its equivalent

  19. Connectedness of a zero-level set as a geometric estimate for parabolic PDEs

  20. Congruences between modular forms

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 Next
/ 12