I will talk on Cannes's Embedding Conjecture, which is considered as one of the most important open problems in the field of operator algebras. It asserts that every finite von Neumann algebra is approximable by matrix algebras in suitable s...
Connectedness of a zero-level set as a geometric estimate for parabolic PDEs
Studies on PDEs are mostly focused on ?nding properties of PDEs within a speci?c discipline and on developing a technique specialized to them. However, ?nding a common structure over di?erent disciplines and unifying theories from di?erent s...
The main topic of the talk is a determinantal formula for high dimensional tree numbers of acyclic complexes via combinatorial Laplace operators . This result is a generalization of Temperley's tree number formula for graphs, motivated by a ...
학부생을 위한 ε 강연회: Mathematics from the theory of entanglement
The notion of entanglement is now considered as a basic resource for the current quantum information and quantum computation theory. We discuss what kinds of mathematics are related to the theory. They include operator algebras, matrix theor...
Several L-functions with the names Dirichlet, Dedekind, Elliptic, and so on usually have p-adic counterparts, so called p-adic L-functions, which share many similar properties such as an evaluation formula at s=1, class number formula, and e...
If density of flow is globally a constant, then the flow is said incompressible. Otherwise, the flow is said compressible. Flow motion of compressible inviscid flow is governed by Euler system. The Euler system is a nonlinear PDE system desc...
2000년 국제수학교육위원회( International Commission on Mathematical Instruction)는 수학교육연구에 탁월한 업적을 이룬 학자에게 수여하는 Freudenthal 메달과 Klein메달을 제정하여, 2003년 부터 홀수 해에 수상하고 있다. 이 강연에서는 2012년 서울에...
In this talk I will talk about existence and regularity for solutions to the compressible viscous Navier-Stokes equations on nonsmooth domains, especially with corners. The solution is constructed by the decomposition of the corner singulari...
학부생을 위한 ε 강연회: Constructions by ruler and compass together with a conic
Trisection of an angle and duplication of a cube are among the famous problems of Greeks. Although they were proven later to be impossible in general, Greeks already knew that one can trisect an angle and duplicate a cube by supplimenting se...
Non-commutative Lp-spaces and analysis on quantum spaces
In this talk we will take a look at analysis on quantum spaces using non-commutative Lp spaces. We will first review what a non-commutative Lpspace is, and then we will see few examples of quantum spaces where Lp analysis problems arise natu...
Ergodic theory of horocycle flow and nilflow has been proved to be useful for analyzing the randomness of Mobius function, a function which reveals the mystery of prime numbers. In this survey talk, we will introduce Mobius function and seve...
It has been more than thirty years since white noise analysis was launched systematically. It is now a good time to have an overview of the theory and to reflect on its advantages in order to anticipate further developments of this theory. O...
학부생을 위한 강연회: Tipping Point Analysis and Influence Maximization in Social Networks
Diffusion of information, rumors or epidemics via various social networks has been extensively studied for decades. In particular, Kempe, Kleinberg, and Tardos (KDD '03) proposed the general threshold model, a generalization of many mathemat...
Role of Computational Mathematics and Image Processing in Magnetic Resonance Electrical Impedance Tomography (MREIT)
Magnetic Resonance Electrical Impedance Tomography (MREIT) is a late medical imaging modality visualizing static conductivity images of electrically conducting subjects. When we inject current into the object, it produces internal distributi...
If a problem has an approximate solution, we try to get some information of the linearized kernel of the problem at the approximate solution to find a real solution. In this talk, I would like to introduce a different approach which is purel...
Chern-Simons invariant and eta invariant for Schottky hyperbolic manifolds
In this talk, I will explain a relationship of the Chern-Simons invariant and the eta invariant for Schottky hyperbolic manifolds. The relating formula involves a defect term given by the Bergman tau function over the conformal boundary Riem...