1. Green’s function for initial-boundary value problem

    In this talk, we will present an approach to construct the Green’s function for an initial boundary value problem with precise pointwise structure in the space-time domain. This approach is given in terms of transform variable and physical v...
    CategoryMath Colloquia Dept.National Univ. of Singapore LecturerShih-Hsien Yu
    Read More
  2. Mechanization of proof: from 4-Color theorem to compiler verification

    I will give a broad introduction to how to mechanize mathematics (or proof), which will be mainly about the proof assistant Coq. Mechanizing mathematics consists of (i) defining a set theory, (2) developing a tool that allows writing definit...
    CategoryMath Colloquia Dept.서울대 컴퓨터공학부 Lecturer허충길
    Read More
  3. On the distributions of partition ranks and cranks

    To explain Ramanujan's integer partition function congruences, Dyson's rank and Andrews-Garvan's crank have been introduced. The generating functions for these two partition statistics are typical examples of mock Jacobi forms and Jacobi for...
    CategoryMath Colloquia Dept.서울과학기술대학교 Lecturer김병찬
    Read More
  4. Q-curvature in conformal geometry

    In this talk, I will talk about the definition Q-curvature and some of its properties. Then I will talk about the problem of prescribing Q-curvature, especially I will explain the ideas of studying the problem using flow approach.
    CategoryMath Colloquia Dept.서강대 LecturerPak Tung Ho
    Read More
  5. Zeros of the derivatives of the Riemann zeta function

    I will introduce behavior of the derivatives of the Riemann zeta function.
    CategoryMath Colloquia Dept.연세대 Lecturer기하서
    Read More
  6. Geometry, algebra and computation in moduli theory

    I will explain the basic concepts of moduli and how moduli spaces can be constructed in algebraic geometry. Exploring the moduli spaces and issues arising from their construction lead to interesting interplay of geometry, algebra and computa...
    CategoryMath Colloquia Dept.서울대 Lecturer현동훈
    Read More
  7. Gromov-Witten-Floer theory and Lagrangian intersections in symplectic topology

    Gromov introduced the analytic method of pseudoholomorphic curves into the study of symplectic topology in the mid 80's and then Floer broke the conformal symmetry of the equation by twisting the equation by Hamiltonian vector fields. We sur...
    CategoryMath Colloquia Dept.IBS, 포항공과대학교 Lecturer오용근
    Read More
  8. High dimensional nonlinear dynamics

    In this talk, I am trying to introduce “what is high dimensional chaos” and also my research works in this area.
    CategoryMath Colloquia Dept.경북대학교 Lecturer도영해
    Read More
  9. What is model theory?

    I will introduce the basic notions of model theory, a branch of mathematical logic, and survey its applications to other areas of mathematics such as analysis, algebra, combinatorics and number theory. If time permits I will present recent w...
    CategoryMath Colloquia Dept.연세대 Lecturer김병한
    Read More
  10. Essential dimension of simple algebras

    The notion of essential dimension was introduced by Buhler and Reichstein in the late 90s. Roughly speaking, the essential dimension of an algebraic object is the minimal number of algebraically independent parameters one needs to define the...
    CategoryMath Colloquia Dept.KAIST Lecturer백상훈
    Read More
  11. Restriction theorems for real and complex curves

    We will talk about the Fourier restriction theorems for non-degenerate and degenerate curves in Euclidean space Rd. This problem was first studied by E. M. Stein and C. Fefferman for the circle and sphere, and it still remains an unsolved pr...
    CategoryMath Colloquia Dept.포항공과대학교 Lecturer박종국
    Read More
  12. Recommendation system and matrix completion: SVD and its applications (학부생을 위한 강연)

    이 강연에서는 최근 음악, 영화 추천 등 다양한 Recommendation System의 기본 아이디어인 Matrix Completion 문제와, 이를 해결하기 위해 Singular Value Decomposition을 통한 차원 축소 및 내재 공간 학습이 어떤 원리로 이루어 지는지 설명합니다. 그리고 ...
    CategoryMath Colloquia Dept.서울대 전기공학부 Lecturer정교민
    Read More
  13. Deformation spaces of Kleinian groups and beyond

    From 1980’s, the study of Kleinian groups has been carried out in the framework of the paradigm of “Thurston’s problems”. Now they are all solved, and we can tackle deeper problems; for instance to determine the topological types of the defo...
    CategoryMath Colloquia Dept.Osaka University LecturerKenichi Ohshika
    Read More
  14. Idempotents and topologies

    A classical theorem of Jacobs, de Leeuw and Glicksberg shows that a representation of a group on a reflexive Banach space may be decomposed into a returning subspace and a weakly mixing subspace. This may be realized as arising from the idem...
    CategoryMath Colloquia Dept.University of Waterloo LecturerNico Spronk
    Read More
  15. Recent progress on the Brascamp-Lieb inequality and applications

    In his survey paper in the Bulletin of the AMS from 2002, R. J. Gardner discussed the Brunn-Minkowski inequality, stating that it deserves to be better known and painted a beautiful picture of its relationship with other inequalities in anal...
    CategoryMath Colloquia Dept.Saitama University LecturerNeal Bez
    Read More
  16. Existence of positive solutions for φ-Laplacian systems

    CategoryMath Colloquia Dept.이용훈 Lecturer수학강연회,특별강연,대중강연
    Read More
  17. Riemann-Hilbert correspondence for irregular holonomic D-modules

    The original Riemann-Hilbert problem is to construct a liner ordinary differential equation with regular singularities whose solutions have a given monodromy. Nowadays, it is formulated as a categorical equivalence of the category of regular...
    CategoryMath Colloquia Dept.서울대학교/RIMS LecturerMasaki Kashiwara
    Read More
  18. Normal form reduction for unconditional well-posedness of canonical dispersive equations

    Normal form method is a classical ODE technique begun by H. Poincare. Via a suitable transformation one reduce a differential equation to a simpler form, where most of nonresonant terms are cancelled. In this talk, I begin to explain the not...
    CategoryMath Colloquia Dept.KAIST Lecturer권순식
    Read More
  19. Random conformal geometry of Coulomb gas formalism

    Several cluster interfaces in 2D critical lattice models have been proven to have conformally invariant scaling limits, which are described by SLE(Schramm-Loewner evolution) process, a family of random fractal curves. As the remarkable achie...
    CategoryMath Colloquia Dept.서울대학교 Lecturer강남규
    Read More
  20. Categorification of Donaldson-Thomas invariants

    In 1980s, Donaldson discovered his famous invariant of 4-manifolds which was subsequently proved to be an integral on the moduli space of semistable sheaves when the 4-manifold is an algebraic surface. In 1994, the Seiberg-Witten invariant w...
    CategoryMath Colloquia Dept.서울대학교 Lecturer김영훈
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 Next
/ 10