<학부생을 위한 ɛ 강연> Secure computation: Promise and challenges
This talk discusses modern cryptographic techniques, such as zero-knowledge proof, multi-party computation and homomorphic encryption, which provide advanced functionality and security guarantees beyond data privacy and authenticity. I will...
CategoryMath ColloquiaDept.송용수Lecturer<학부생을 위한 ɛ 강연> Secure computation: Promise and challenges
For a given compact Lie group G, classifying all manifolds equipped with G-actions is one of the most fundamental and important problems in differential geometry. In this talk, We will discuss the problem in the symplectic category and expl...
Toward bridging a connection between machine learning and applied mathematics
This lecture explores the topics and areas that have guided my research in computational mathematics and deep learning in recent years. Numerical methods in computational science are essential for comprehending real-world phenomena, and dee...
Riemann-Hilbert correspondence for irregular holonomic D-modules
The original Riemann-Hilbert problem is to construct a liner ordinary differential equation with regular singularities whose solutions have a given monodromy. Nowadays, it is formulated as a categorical equivalence of the category of regular...
Free probability is a young mathematical theory that started in the theory of operator algebras. One of the main features of free probability theory is its connection with random matrices. Indeed, free probability provides operator algebrai...
동형암호(Homomorphic Encryption)는 암호화된 상태에서 복호화없이 계산을 수행하는 암호로서 1978년 제안된 이후 오랜 연구를 거쳐 최근 실용화를 앞두고 있다. 본 강연에서는 우선 동형암호의 개념과 최근 연구결과 그리고 이의 기계학습에의 응용을 소개한...
Ward's identities and the related concept of the stress-energy tensor are standard tools in conformal field theory. I will present a mathematical overview of these concepts and outline relations between conformal field theory and Schramm-Loe...
젊은과학자상 수상기념강연: From particle to kinetic and hydrodynamic descriptions to flocking and synchronization
In this talk, I will report a recent progress for the modeling of collective behaviors of complex systems, in particular ocking and synchronization. Flocking and synchro-nization are ubiquitous in our daily life, for example, ocking of birds...
Noncommutative Geometry. Quantum Space-Time and Diffeomorphism Invariant Geometry
A general goal of noncommutative geometry (in the sense of A. Connes) is to translate the main tools of differential geometry into the Hilbert space formalism of quantum mechanics by taking advantage of the familiar duality between spaces an...