Diophantine equations and moduli spaces with nonlinear symmetry
A fundamental result in number theory is that, under certain linear actions of arithmetic groups on homogeneous varieties, the integral points of the varieties decompose into finitely many orbits. For a classical example, the set of integra...
Sufficient conditions for the Jensen polynomials of the derivatives of a real entire function to be hyperbolic are obtained. The conditions are given in terms of the growth rate and zero distribution of the function. As a consequence some r...
초록: Let X be a homogeneous space for a Lie group G. A (G,X)-structure on a manifold M is an atlas of coordinate charts valued in X, such that the changes of coordinates locally lie in G. It is a fundamental question to ask how many ways o...
Geometric Langlands theory: A bridge between number theory and physics
※ 강연 앞 부분이 잘렸습니다. (강연자료 다운: Geometric Langlands Theory [A Bridge between Number Theory and Physics] (2022.04.28).pdf ) 초록: The Langlands program consists of a tantalizing collection of surprising results and conjectures w...
<2020년도 젊은 과학자상 수상 기념강연> Metastability of stochastic systems
Metastability란 random process가 여러 개의 안정된 상태를 가질 때 반드시 나타나는 현상으로, 수리물리학이나 화학의 여러 모형들은 물론 딥러닝의 알고리즘 등 다양한 곳에서 공통적으로 나타나는 현상이다. 본 강연에서는 이 Metastability를 수학적으로...
작용수대수에서 순서구조가 중요한 역할을 한다. C*-대수의 시작이라 할 수 있는 Gelfand-Naimark-Segal 표현정리는 양선형범함수로부터 *-준동형을 만들어내는데, 그 표현정리 이후 여러 가지 종류의 양사상에 대한 연구가 이루어졌다. 최근 활발하게 연구되...
There have been at least two surprising events to geometers in 80-90s that they had to admit physics really helps to solve classical problems in geometry. Donaldson proved the existence of exotic 4-dimensional Euclidean space using gauge th...
On classification of long-term dynamics for some critical PDEs
This talk concerns the problem of classifying long-term dynamics for critical evolutionary PDEs. I will first discuss what the critical PDEs are and soliton resolution for these equations. Building upon soliton resolution, I will further in...
Homogeneous dynamics and its application to number theory
Homogeneous dynamics, the theory of flows on homogeneous spaces, has been proved useful for certain problems in Number theory. In this talk, we will explain what kind of geometry and dynamics we need to solve certain number theoretic questi...
The thirteen books "Elements" were written or collected by Euclid of Alexandria about 300 BCE. Many think that "Elements" is the most important example of deductive mathematics. In fact, the Common Notions and the Postulates of Elements are...
Mechanization of proof: from 4-Color theorem to compiler verification
I will give a broad introduction to how to mechanize mathematics (or proof), which will be mainly about the proof assistant Coq. Mechanizing mathematics consists of (i) defining a set theory, (2) developing a tool that allows writing definit...
Recommendation system and matrix completion: SVD and its applications (학부생을 위한 강연)
이 강연에서는 최근 음악, 영화 추천 등 다양한 Recommendation System의 기본 아이디어인 Matrix Completion 문제와, 이를 해결하기 위해 Singular Value Decomposition을 통한 차원 축소 및 내재 공간 학습이 어떤 원리로 이루어 지는지 설명합니다. 그리고 ...
2000년 국제수학교육위원회( International Commission on Mathematical Instruction)는 수학교육연구에 탁월한 업적을 이룬 학자에게 수여하는 Freudenthal 메달과 Klein메달을 제정하여, 2003년 부터 홀수 해에 수상하고 있다. 이 강연에서는 2012년 서울에...
A modified separation method to solve a heat-transfer boundary value problem
We derive a general solution of the heat equation through two modied separation methods. The obtained solution is expressed as linearly combined kernel solutions in terms of Hermite polynomials, which appears to provide an explanation of non...
Volume entropy of a compact manifold is the exponential growth rate of balls in the universal cover. This seemingly coarse invariant contains a lot of geometric information of the manifold. We will discuss some relations to other invariants,...
Geometry, algebra and computation in moduli theory
I will explain the basic concepts of moduli and how moduli spaces can be constructed in algebraic geometry. Exploring the moduli spaces and issues arising from their construction lead to interesting interplay of geometry, algebra and computa...
Weyl character formula and Kac-Wakimoto conjecture
The character of the finite-dimensional irreducible modules over a finite-dimensional simple Lie algebra is given by the celebrated Weyl character formula. However, such a formula does not hold in general for finite-dimensional irreducible m...