Extra Form
강연자 지운식
소속 충북대학교
date 2011-04-14
We start with the famous Heisenberg uncertainty principle to give the idea of the probability in quantum mechanics. The Heisenberg uncertainty principle states by precise inequalities that the product of uncertainties of two physical quantities, such as momentum and position (operators), must be greater than certain (strictly positive) constant, which means that if we know one of the quantities more precisely, then we know the other one less precisely. Therefore, in quantum mechanics, predictions should be probabilistic, not deterministic, and then position and momentum should be considered as random variables to measure their probabilities.
In mathematical framework, the noncommutative probability is another name of quantum probability, and a quantum probability space consists of an -algebra of operators on a Hilbert space and a state (normalized positive linear functional) on the operator algebra. We study the basic notions in quantum probability theory comparing with the basic notions in classical (commutative) probability theory, and we also study the fundamental theory of quantum stochastic calculus motivated by the classical stochastic calculus.
Finally, we discuss several applications with future prospects of classical and quantum probability theory.
첨부 '1'
  1. A new view of Fokker-Planck equations in finite and Infinite dimensional spaces

  2. 원의 유리매개화에 관련된 수학

  3. Introduction to Non-Positively Curved Groups

  4. Noncommutative Geometry. Quantum Space-Time and Diffeomorphism Invariant Geometry

  5. 행렬함수 Permanent의 극소값 결정과 미해결 문제들

  6. The Mathematics of the Bose Gas and its Condensation

  7. Codimension Three Conjecture

  8. 학부생을 위한 강연: 건축과 수학

  9. 07Nov
    by Editor
    in 수학강연회

    Classical and Quantum Probability Theory

  10. Iwasawa main conjecture and p-adic L-functions

  11. 학부생을 위한 강연: Choi's orthogonal Latin Squares is at least 61 years earlier than Euler's

  12. 젊은과학자상 수상기념강연: From particle to kinetic and hydrodynamic descriptions to flocking and synchronization

  13. Sums of squares in quadratic number rings

  14. Fano manifolds of Calabi-Yau Type

  15. 곡선의 정의란 무엇인가?

  16. The significance of dimensions in mathematics

  17. Fermat´s last theorem

  18. It all started with Moser

  19. On some nonlinear elliptic problems

  20. Topology and number theory

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 Next
/ 11