https://www.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
Extra Form
강연자 이승진
소속 서울대
date 2017-03-16

A hyperplane arrangement is an arrangement of a finite set of hyperplanes in some vector space. Hyperplane arrangements generalize other famous combinatorial objects such as graphs and matroids. In this talk, we introduce a characteristic polynomial of a hyperplane arrangement. We discuss how to compute the polynomial and compute the number of regions generated by hyperplane arrangements by using the characteristic polynomials.  


Atachment
첨부 '1'
  1. 17Mar
    by 김수현
    in 수학강연회

    An introduction to hyperplane arrangements

  2. Analysis and computations of stochastic optimal control problems for stochastic PDEs

  3. Analytic torsion and mirror symmetry

  4. Anomalous diffusions and fractional order differential equations

  5. Arithmetic of elliptic curves

  6. Averaging formula for Nielsen numbers

  7. Birational Geometry of varieties with effective anti-canonical divisors

  8. Brownian motion and energy minimizing measure in negative curvature

  9. Brownian motion with darning and conformal mappings

  10. Categorical representation theory, Categorification and Khovanov-Lauda-Rouquier algebras

  11. Categorification of Donaldson-Thomas invariants

  12. Chern-Simons invariant and eta invariant for Schottky hyperbolic manifolds

  13. Circular maximal functions on the Heisenberg group

  14. Class field theory for 3-dimensional foliated dynamical systems

  15. Classical and Quantum Probability Theory

  16. Cloaking via Change of Variables

  17. Codimension Three Conjecture

  18. Combinatorial Laplacians on Acyclic Complexes

  19. Compressible viscous Navier-Stokes flows: Corner singularity, regularity

  20. Conformal field theory and noncommutative geometry

Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 Next
/ 12