https://www.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
Extra Form
Lecturer 정교민
Dept. KAIST
date Nov 01, 2012
Diffusion of information, rumors or epidemics via various social networks has been extensively studied for decades. In particular, Kempe, Kleinberg, and Tardos (KDD '03) proposed the general threshold model, a generalization of many mathematical models for diffusion on networks which is based on utility maximization of individuals in game theoretic consideration. Despite its importance, the analysis under the threshold model, however, has concentrated on special cases such as the submodular influence (by Mossel-Roch (STOC '07)), homogeneous thresholds (by Whitney(Phys. Rev. E. '10)), and locally tree-like networks (by Watts(PNAS '02)). We first consider the general threshold model with arbitrary threshold distribution on arbitrary networks. We prove that only if (essentially) all nodes have degrees \omega(log n), the final cascade size is highly concentrated around its mean with high probability for a large class of general threshold models including the linear threshold model, and the Katz-Shapiro pricing model. We also prove that in those cases, somewhat surprisingly, the expectation of the cascade size is asymptotically independent of the network structure if initial adopters are chosen by public advertisements, and provide a formula to compute the cascade size. Our formula allows us to compute when a phase transition for a large spreading (a tipping point) happens. We then provide a novel algorithm for influence maximization that integrates a new message passing based influence ranking and influence estimation methods in the independent cascade model.
Atachment
Attachment '1'
List of Articles
Category Subject Dept. Lecturer
Math Colloquia Zeros of linear combinations of zeta functions file 연세대학교 기하서
Math Colloquia Zeros of the derivatives of the Riemann zeta function file 연세대 기하서
Math Colloquia 곡선의 정의란 무엇인가? file 서울대학교 김영훈
Math Colloquia 극소곡면의 등주부등식 file KIAS 최재경
Math Colloquia 돈은 어떻게 우리 삶에 돈며들었는가? (불확실성 시대에 부는 선형적으로 증가하는가?) file 농협은행 홍순옥
Math Colloquia 원의 유리매개화에 관련된 수학 file 건국대학교 최인송
Math Colloquia 젊은과학자상 수상기념강연: From particle to kinetic and hydrodynamic descriptions to flocking and synchronization file 서울대학교 하승열
Math Colloquia 정년퇴임 기념강연: Volume Conjecture file 서울대학교 김혁
Math Colloquia 정년퇴임 기념강연: 회고 file 서울대 김도한
Math Colloquia 정년퇴임 기념강연회: 숙제 file 서울대학교 지동표
Math Colloquia 학부생을 위한 ε 강연회: Constructions by ruler and compass together with a conic file 건국대/서울대 최인송
Math Colloquia 학부생을 위한 ε 강연회: Mathematics from the theory of entanglement file 서울대학교 계승혁
Math Colloquia 학부생을 위한 ε 강연회: Sir Isaac Newton and scientific computing file 서울대학교 신동우
Math Colloquia 학부생을 위한 강연: A COMBINATORIAL FORMULA FOR INFORMATION FLOW IN A NETWORK file Univ. of Rhode Island/서울대학교 국웅
Math Colloquia 학부생을 위한 강연: Choi's orthogonal Latin Squares is at least 61 years earlier than Euler's file 연세대학교 송홍엽
Math Colloquia 학부생을 위한 강연: Introduction to partial differential equations file 서울대학교 변순식
Math Colloquia 학부생을 위한 강연: 건축과 수학 file UI 건축사무소 위진복
Math Colloquia 학부생을 위한 강연: 브라질과 프랑스는 왜 축구를 잘 할까? - 경제와 수학과 축구와 법률 file 서울대학교 법과대학 김화진
Math Colloquia 학부생을 위한 강연회: Tipping Point Analysis and Influence Maximization in Social Networks file KAIST 정교민
Math Colloquia 학부생을 위한 강연회: What is the algebraic number theory? file KAIST 구자경
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 Next
/ 12