Concordance is a relation which classifies knots in 3-space via surfaces in 4-space, and it is closely related with low dimensional topology. Satellite operators are one of the main tools in the study of knot concordance, and it has been wi...
In late 1970's John McKay discovered the astonishing identity 196884=196883+1, which lead Conway and Norton to formulate the famous Monstrous Moonshine conjectures about the Monster group, the largest sporadic finite simple group. The simple...
행렬, 행렬함수 그리고 행렬방정식 (Matrix, Matrix Functions and Matrix Equations)
In this presentation, we introduce how matrices appeared in the history of mathematics and how they are used in today's fields. Also, we consider the necessary mathematics concepts to define the matrix functions. and the existence and conver...
The thirteen books "Elements" were written or collected by Euclid of Alexandria about 300 BCE. Many think that "Elements" is the most important example of deductive mathematics. In fact, the Common Notions and the Postulates of Elements are...
A feature of log-correlation naturally appears in diverse objects such as random matrices, random discrete geometries and Riemann zeta function. In this talk, I will give an overview on the theory of log-correlated fields and talk about rec...
WGAN with an Infinitely wide generator has no spurious stationary points
Generative adversarial networks (GAN) are a widely used class of deep generative models, but their minimax training dynamics are not understood very well. In this work, we show that GANs with a 2-layer infinite-width generator and a 2-layer...
There are basically two approaches for solving linear systems: one is to exactly solve the linear sytem such as Gaussian-elimination. The other approximates the solution in the Krylov spaces; Conjugate-gradient and General minimum residual m...
Hybrid discontinuous Galerkin methods in computational science and engineering
Computation facilitates to understand phenomena and processes from science and engineering; we no longer need to depend only on theory and experiment. Computational Science and Engineering (CSE) is a rapidly developing multidisciplinary area...
A knot is a smooth embedding of an oriented circle into the three-sphere, and two knots are concordant if they cobound a smoothly embedded annulus in the three-sphere times the interval. Concordance gives an equivalence relation, and the se...
We will talk about the Fourier restriction theorems for non-degenerate and degenerate curves in Euclidean space Rd. This problem was first studied by E. M. Stein and C. Fefferman for the circle and sphere, and it still remains an unsolved pr...
The theory of L-functions and zeta functions have been the key subject of mathematical research during the centuries since the Riemann zeta function was introduced and its important connection to the arithmetic of the integer was recognized....
Chern-Simons invariant and eta invariant for Schottky hyperbolic manifolds
In this talk, I will explain a relationship of the Chern-Simons invariant and the eta invariant for Schottky hyperbolic manifolds. The relating formula involves a defect term given by the Bergman tau function over the conformal boundary Riem...
Equations defining algebraic curves and their tangent and secant varieties
It is a fundamental problem in algebraic geometry to study equations defining algebraic curves. In 1984, Mark Green formulated a famous conjecture on equations defining canonical curves and their syzygies. In early 2000's, Claire Voisin...
국제수학자대회(ICM, International Congress of Mathematicians)는 1897년 쮜리히에서 처음 개최되었고, 매 4년마다 개최된다. 100여국 4천여 명 정도의 규모로 9일 동안 계속된다. 우리시대 최고의 수학자들이 참여하며, 필즈상(Fields Medal)을 개막식에서 ...