A New Approach to Discrete Logarithm with Auxiliary Inputs
Let be a cyclic group with generator . The discrete logarithm problem with auxiliary inputs (DLPwAI) is asked to find with auxiliary inputs , ,…, . In Eurocrypt 2006, an algorithm is proposed to solve DLPwAI in when . In this paper, we reduc...
It is very interesting to study what problems can be computed in irreducible plane curve singularities in algebraicgeometry? Then, the aim of this talk is to compute the explicit algorithm for finding the correspondence between the family of...
The mapping class group of a surface S is the component group of orientation-preserving homeomorphisms on S. We survey geometric and algebraic aspects of this group, and introduce a technique of using right-angled Artin groups to find geomet...
Ergodic theory of horocycle flow and nilflow has been proved to be useful for analyzing the randomness of Mobius function, a function which reveals the mystery of prime numbers. In this survey talk, we will introduce Mobius function and seve...
Non-commutative Lp-spaces and analysis on quantum spaces
In this talk we will take a look at analysis on quantum spaces using non-commutative Lp spaces. We will first review what a non-commutative Lpspace is, and then we will see few examples of quantum spaces where Lp analysis problems arise natu...
학부생을 위한 ε 강연회: Mathematics from the theory of entanglement
The notion of entanglement is now considered as a basic resource for the current quantum information and quantum computation theory. We discuss what kinds of mathematics are related to the theory. They include operator algebras, matrix theor...
The main topic of the talk is a determinantal formula for high dimensional tree numbers of acyclic complexes via combinatorial Laplace operators . This result is a generalization of Temperley's tree number formula for graphs, motivated by a ...
In this talk, we discuss recent work with Albers, Cieliebak, Fish, Frauenfelder, Hofer and Paternain on several aspects of the three body problem. The ultimate goal of this project is to use modern, holomorphic curve techniques to investigat...
CategorySpecial ColloquiaDept.서울대학교LecturerOtto van Koert
Fefferman's program and Green functions in conformal geometry
Motivated by the analysis of the singularity of the Bergman kernel of a strictly pseudoconvex domain, Charlie Fefferman launched in the late 70s the program of determining all local biholomorphic invariants of strictly pseudoconvex domain. T...
Despite of the fact that 4-dimensional manifolds together with 3-dimensional manifolds are the most fundamental and important objects in geometry and topology and topologists had great achievements in 1960's, there has been little known on 4...
In 1980s, Donaldson discovered his famous invariant of 4-manifolds which was subsequently proved to be an integral on the moduli space of semistable sheaves when the 4-manifold is an algebraic surface. In 1994, the Seiberg-Witten invariant w...
Random conformal geometry of Coulomb gas formalism
Several cluster interfaces in 2D critical lattice models have been proven to have conformally invariant scaling limits, which are described by SLE(Schramm-Loewner evolution) process, a family of random fractal curves. As the remarkable achie...