https://www.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
Extra Form
강연자 최재경
소속 KIAS
date 2012-03-29

둘레가 같은 평면의 영역중에서 넓이가 최대인 것은 원이라는 것이 등주부등식이다.
이와 똑 같은 등주부등식이 극소곡면에 대해서도 성립할 것이라는 예상이 90년 전에 제기되었다. 이 예상의 역사와 현주소에 대해서 알아보기로 하자.

Atachment
첨부 '1'
  1. Spectral Analysis for the Anomalous Localized Resonance by Plasmonic Structures

    We present a mathematical justification of cloaking due to anomalous localized resonance (CALR). We consider the dielectric problem with a source term in a structure with a layer of plasmonic material. Using layer potentials and symmetrizati...
    Category수학강연회 소속인하대학교 강연자강현배
    Read More
  2. Conformal field theory and noncommutative geometry

    Conformal field theory and noncommutative geometry
    Category수학강연회 소속동경대학교 강연자Kawahigashi
    Read More
  3. 극소곡면의 등주부등식

    둘레가 같은 평면의 영역중에서 넓이가 최대인 것은 원이라는 것이 등주부등식이다. 이와 똑 같은 등주부등식이 극소곡면에 대해서도 성립할 것이라는 예상이 90년 전에 제기되었다. 이 예상의 역사와 현주소에 대해서 알아보기로 하자.
    Category수학강연회 소속KIAS 강연자최재경
    Read More
  4. Topology of configuration spaces on graphs

    학부에서 왜 abstract algebra I, II 를 온전히 배워야 하는지를 BC 5세기경 Pythagoras로 부터 시작된 수론 문제가 현재까지 어떻게 발전되어 왔는지를 예를 들어 설명합니다.
    Category수학강연회 소속KAIST 강연자고기형
    Read More
  5. 학부생을 위한 강연회: What is the algebraic number theory?

    학부에서 왜 abstract algebra I, II 를 온전히 배워야 하는지를 BC 5세기경 Pythagoras로 부터 시작된 수론 문제가 현재까지 어떻게 발전되어 왔는지를 예를 들어 설명합니다.
    Category수학강연회 소속KAIST 강연자구자경
    Read More
  6. 정년퇴임 기념강연회: 숙제

    정년퇴임 기념강연회: 숙제
    Category수학강연회 소속서울대학교 강연자지동표
    Read More
  7. Integer partitions, q-series, and Modular forms

    In this talk, we briefly introduce how a combinatorial object, Integer partition, is related with number theoretic subjects : q-series and modular forms. In particular, we will focus on (1) combinatorial proof for q-series identities (2) ari...
    Category수학강연회 소속서울과학기술 대학 강연자김병찬
    Read More
  8. Root multiplicities of hyperbolic Kac-Moody algebras and Fourier coefficients of modular forms

    In this talk, we will consider the hyperbolic Kac-Moody algebra associated to a certain rank 3 Cartan matrix and generalized Kac-Moody algebras that contain the hyperbolic Kac-Moody algebra. The denominator funtions of the generalized Kac-Mo...
    Category수학강연회 소속Univ. of Connecticut 강연자이규환
    Read More
  9. 학부생을 위한 강연: 브라질과 프랑스는 왜 축구를 잘 할까? - 경제와 수학과 축구와 법률

    학부생을 위한 강연: 브라질과 프랑스는 왜 축구를 잘 할까? - 경제와 수학과 축구와 법률
    Category수학강연회 소속서울대학교 법과대학 강연자김화진
    Read More
  10. A new view of Fokker-Planck equations in finite and Infinite dimensional spaces

    Fokker-Planck and Kolmogorov (backward) equations can be interpreted as linearisations of the underlying stochastic differential equations (SDE). It turns out that, in particular, on infinite dimensional spaces (i.e. for example if the SDE i...
    Category수학강연회 소속Bielefeld Univ./Purdue Univ. 강연자Michael Roeckner
    Read More
  11. 원의 유리매개화에 관련된 수학

    The spaces admitting a rational parameterization are called rational. In particular plane conics, including circles, are rational. We will explain a few interesting applications of the rational parameterization of a circle. Also several exam...
    Category수학강연회 소속건국대학교 강연자최인송
    Read More
  12. Introduction to Non-Positively Curved Groups

    Introduction to Non-Positively Curved Groups
    Category수학강연회 소속KAIST 강연자김상현
    Read More
  13. Noncommutative Geometry. Quantum Space-Time and Diffeomorphism Invariant Geometry

    A general goal of noncommutative geometry (in the sense of A. Connes) is to translate the main tools of differential geometry into the Hilbert space formalism of quantum mechanics by taking advantage of the familiar duality between spaces an...
    Category수학강연회 소속서울대학교 강연자Raphael Ponge
    Read More
  14. 행렬함수 Permanent의 극소값 결정과 미해결 문제들

    볼록다면체에서 permanent 함수의 최소값은 얼마인가? 그 때의 최소행렬은 어떤 형태인가? 그리고 이중확률구조를 갖는 행렬들에 대하여 제약조건이 주어지면 볼록다면체의 면 위에서 permanent 함수의 최소값들은 어떻게 결정하는가? 등에 관하여 연구된 내용...
    Category수학강연회 소속제주대학교/서울대학교 강연자송석준
    Read More
  15. The Mathematics of the Bose Gas and its Condensation

    Since Bose and Einstein discovered the condensation of Bose gas, which we now call Bose-Einstein condensation, its mathematical properties have been of great importance for mathematical physics. Recently, many rigorous results have been obta...
    Category수학강연회 소속KAIST 강연자이지운
    Read More
  16. Codimension Three Conjecture

    We proved the codimension three conjecture that says the micro-local perverse sheaves extend if it is defined outside odimension three (counting from Lagrangian subvarity). It is a joint work with Kari Vilonen.
    Category수학강연회 소속교토대학교/서울대학교 강연자Masaki Kashiwara
    Read More
  17. 학부생을 위한 강연: 건축과 수학

    수학의 기하학, 위상학 그리고 알고리즘의 건축디자인의 적용 사례 및 이론적 배경
    Category수학강연회 소속UI 건축사무소 강연자위진복
    Read More
  18. Classical and Quantum Probability Theory

    We start with the famous Heisenberg uncertainty principle to give the idea of the probability in quantum mechanics. The Heisenberg uncertainty principle states by precise inequalities that the product of uncertainties of two physical quantit...
    Category수학강연회 소속충북대학교 강연자지운식
    Read More
  19. Iwasawa main conjecture and p-adic L-functions

    The theory of L-functions and zeta functions have been the key subject of mathematical research during the centuries since the Riemann zeta function was introduced and its important connection to the arithmetic of the integer was recognized....
    Category수학강연회 소속포항공과대학교 강연자박지훈
    Read More
  20. 학부생을 위한 강연: Choi's orthogonal Latin Squares is at least 61 years earlier than Euler's

    조선시대 영의정을 지낸 최석정(1646-1715)은 그의 저서 구수략에 여러 크기의 직교라틴방진을 남겼는데 이는 combinatorial mathematics의 효시로 알려진 Leonhard Euler(1707?1783) 의 직교라틴방진보다도 적어도 61년이 앞서는 기록이다. 놀랍게도 최석정이...
    Category수학강연회 소속연세대학교 강연자송홍엽
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 Next
/ 12