Concordance is a relation which classifies knots in 3-space via surfaces in 4-space, and it is closely related with low dimensional topology. Satellite operators are one of the main tools in the study of knot concordance, and it has been wi...
A dissipative effect on some PDEs with physical singularity
초록: In this lecture, we study various dissipative effect in a phase space from either entropy dissipation or boundary. We see how this effect leads mathematical studies on long time behavior and scale-uniform estimate of kinetic PDEs in g...
Category수학강연회소속University of Wisconsin-Madison강연자김찬우
Study stochastic biochemical systems via their underlying network structures
When a biological system is modeled using a mathematical process, the following step is normally to estimate the system parameters. Despite the numerous computational and statistical techniques, estimating parameters for complex systems can...
※ 강연 뒷부분이 녹화되지 않았습니다. A symplectic manifold is a space with a global structure on which Hamiltonian equations are defined. A classical result by Darboux says that every symplectic manifold locally looks standard, so it has be...
Circular maximal functions on the Heisenberg group
The spherical average has been a source of many problems in harmonic analysis. Since late 90's, the study of the maximal spherical means on the Heisenberg group $mathbb{H}^n$ has been started to show the pointwise ergodic theorems on the gro...
The process of mathematical modelling for complex and stochastic biological systems
The revolution of molecular biology in the early 1980s has revealed complex network of non-linear and stochastic biochemical interactions underlying biological systems. To understand this complex system, mathematical models have been widely ...
Symplectic topology and mirror symmetry of partial flag manifolds
Soon after Gromov’s applications of pseudo-holomorphic curves to symplectic topology, Floer invented an infinite-dimensional Morse theory by analyzing moduli spaces of pseudo-holomorphic curves to make substantial progress on Arnold&r...
Connectedness of a zero-level set as a geometric estimate for parabolic PDEs
Studies on PDEs are mostly focused on ?nding properties of PDEs within a speci?c discipline and on developing a technique specialized to them. However, ?nding a common structure over di?erent disciplines and unifying theories from di?erent s...
In 1980s, Donaldson discovered his famous invariant of 4-manifolds which was subsequently proved to be an integral on the moduli space of semistable sheaves when the 4-manifold is an algebraic surface. In 1994, the Seiberg-Witten invariant w...
Sufficient conditions for the Jensen polynomials of the derivatives of a real entire function to be hyperbolic are obtained. The conditions are given in terms of the growth rate and zero distribution of the function. As a consequence some r...
Structural stability of meandering-hyperbolic group actions
Sullivan sketched a proof of his structural stability theorem for differentiabl group actions satisfying certain expansion-hyperbolicity axioms. We relax Sullivan’s axioms and introduce a notion of meandering hyperbolicity for group a...
For the irreducible representations of the Hecke algebras, the minimal elements in each conjugacy class play an important role. In this talk, we try to review the minimal length elements and characterize in a more efficient way to find the m...
Category수학강연회소속University of Picardie Jules-Verne, Amiens강연자김성순
The mapping class group of a surface S is the component group of orientation-preserving homeomorphisms on S. We survey geometric and algebraic aspects of this group, and introduce a technique of using right-angled Artin groups to find geomet...
For each natural number k, the C^k diffeomorphisms of the circle form a group with function compositions. This definition even extends to real numbers k no less than one by Hölder continuity. We survey algebraic properties of this grou...