<학부생을 위한 ɛ 강연> Secure computation: Promise and challenges
This talk discusses modern cryptographic techniques, such as zero-knowledge proof, multi-party computation and homomorphic encryption, which provide advanced functionality and security guarantees beyond data privacy and authenticity. I will...
CategoryMath ColloquiaDept.송용수Lecturer<학부생을 위한 ɛ 강연> Secure computation: Promise and challenges
The lace expansion in the past, present and future
The lace expansion is one of the few methods to rigorously prove critical behavior for various models in high dimensions. It was initiated by David Brydges and Thomas Spencer in 1985 to show degeneracy of the critical behavior for weakly se...
It is usually a difficult problem to characterize precisely which elements of a given integral domain can be written as a sum of squares of elements from the integral domain. Let R denote the ring of integers in a quadratic number field. Thi...
CategoryMath ColloquiaDept.Univ. of KentuckyLecturerDavid Leep
We consider different growth rates associated with the geometry (distance, volume, heat kernel) on a cover of a compact Riemannian manifold. We present general inequalities. We discuss the rigidity results and questions in the case of negati...
Quantum Dynamics in the Mean-Field and Semiclassical Regime
The talk will review a new approach to the limits of the quantum N-body dynamics leading to the Hartree equation (in the large N limit) and to the Liouville equation (in the small Planck constant limit). This new strategy for studying both l...
Given a group of isometries of a metric space, one can draw a random sequence of group elements, and look at its action on the space. What are the asymptotic properties of such a random walk? The answer depends on the geometry of the space...
Creating information and knowledge from large and complex data sets is one the fundamental intellectual challenges currently being faced by the mathematical sciences. One approach to this problem comes from the mathematical subdiscipline cal...
CategoryMath ColloquiaDept.Stanford UniversityLecturerGunnar E. Carlsson
Topological aspects in the theory of aperiodic solids and tiling spaces
After a review of various types of tilings and aperiodic materials, the notion of tiling space (or Hull) will be defined. The action of the translation group makes it a dynamical system. Various local properties, such as the notion of "Finit...
CategoryMath ColloquiaDept.Georgia Institute of Technology, School of Mathematics and School of PhysicsLecturerJean V. Bellissard
Many aspects of the differential geometry of embedded Riemannian manifolds, including curvature, can be formulated in terms of multi-linear algebraic structures on the space of smooth functions. For matrix analogues of embedded surfaces, one...
In the early 90's, physicists Bershadsky-Cecotti-Ooguri-Vafa conjectured that the analytic torsion was the counterpart in complex geometry of the counting problem of elliptic curves in Calabi-Yau threefolds. It seems that this conjecture is ...
From 1980’s, the study of Kleinian groups has been carried out in the framework of the paradigm of “Thurston’s problems”. Now they are all solved, and we can tackle deeper problems; for instance to determine the topological types of the defo...
Lagrangian Floer theory in symplectic manifold associate a category (A infinity category) to a symplectic manifold. More than 20 years ago a relation of a relation between Lagrangian Floer theory and Gauge theory was studied by Floer himself...
CategoryMath ColloquiaDept.Simons Center for Geometry and PhysicsLecturerKenji Fukaya
Unconditional results without an unproved hypothesis such as the generalized Riemann hypothesis (GRH) are very weak for an individual number field. But if we consider a family of number fields, one can prove just as strong results as we woul...
CategoryMath ColloquiaDept.Univ. of Toronto / KIASLecturerKim, Henry
A function from a group G to integers Z is called a quasi-morphism if there is a constant C such that for all g and h in G, |f(gh)-f(g)-f(h)| < C. Surprisingly, this idea has been useful. I will overview the theory of quasi-morphisms includi...
A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 which can be realized as isometric immersions into R3. This problem can be formulated as initial and/or boundary ...
CategoryMath ColloquiaDept.Univ. of WisconsinLecturerMarshall Slemrod