The theory of L-functions and zeta functions have been the key subject of mathematical research during the centuries since the Riemann zeta function was introduced and its important connection to the arithmetic of the integer was recognized....
Chern-Simons invariant and eta invariant for Schottky hyperbolic manifolds
In this talk, I will explain a relationship of the Chern-Simons invariant and the eta invariant for Schottky hyperbolic manifolds. The relating formula involves a defect term given by the Bergman tau function over the conformal boundary Riem...
Equations defining algebraic curves and their tangent and secant varieties
It is a fundamental problem in algebraic geometry to study equations defining algebraic curves. In 1984, Mark Green formulated a famous conjecture on equations defining canonical curves and their syzygies. In early 2000's, Claire Voisin...
국제수학자대회(ICM, International Congress of Mathematicians)는 1897년 쮜리히에서 처음 개최되었고, 매 4년마다 개최된다. 100여국 4천여 명 정도의 규모로 9일 동안 계속된다. 우리시대 최고의 수학자들이 참여하며, 필즈상(Fields Medal)을 개막식에서 ...
If density of flow is globally a constant, then the flow is said incompressible. Otherwise, the flow is said compressible. Flow motion of compressible inviscid flow is governed by Euler system. The Euler system is a nonlinear PDE system desc...
<학부생을 위한 ɛ 강연> Introduction to the incompressible Navier-Stokes equations
In this talk, I will briefly introduce some properties of the incompressible Navier-Stokes equations. Then, I will review some classical results obtained by harmonic analysis tools.
The notion of essential dimension was introduced by Buhler and Reichstein in the late 90s. Roughly speaking, the essential dimension of an algebraic object is the minimal number of algebraically independent parameters one needs to define the...
We discuss how the closed connected 1-dimensional manifold, namely the circle, can help understanding 3-manifolds. We describe so-called the universal circle proposed by a lengendary mathematician, William Thurston, and discuss certain gene...
Theory and applications of partial differential equations
I will talk in general about theory and applications of partial differential equations. A recent progress in the regularity theory for nonlinear problems will be also discussed, including uniform estimates of solutions in various function sp...
If a problem has an approximate solution, we try to get some information of the linearized kernel of the problem at the approximate solution to find a real solution. In this talk, I would like to introduce a different approach which is purel...
A W-algebra is introduced as a symmetry algebra in 2-dimensional conformal field theory. Mathematical realization of a W-algebra was introduced by the theory of vertex algebras. Especially, W-algebras related to Lie superalgebras have been s...
The general theory implies that the distribution of an irreducible Markov chain converges to its stationary distribution as time diverges to infinity. The speed of corresponding convergence is a significant issue in the study of mathematical...
<2020년도 젊은 과학자상 수상 기념강연> Metastability of stochastic systems
Metastability란 random process가 여러 개의 안정된 상태를 가질 때 반드시 나타나는 현상으로, 수리물리학이나 화학의 여러 모형들은 물론 딥러닝의 알고리즘 등 다양한 곳에서 공통적으로 나타나는 현상이다. 본 강연에서는 이 Metastability를 수학적으로...
Several L-functions with the names Dirichlet, Dedekind, Elliptic, and so on usually have p-adic counterparts, so called p-adic L-functions, which share many similar properties such as an evaluation formula at s=1, class number formula, and e...
Quantitative residual non-vanishing of special values of various L-functions
Non-vanishing modulo a prime of special values of various $L$-functions are of great importance in studying structures of relevant arithmetic objects such as class groups of number fields and Selmer groups of elliptic curves. While there hav...
학부생을 위한 강연: Choi's orthogonal Latin Squares is at least 61 years earlier than Euler's
조선시대 영의정을 지낸 최석정(1646-1715)은 그의 저서 구수략에 여러 크기의 직교라틴방진을 남겼는데 이는 combinatorial mathematics의 효시로 알려진 Leonhard Euler(1707?1783) 의 직교라틴방진보다도 적어도 61년이 앞서는 기록이다. 놀랍게도 최석정이...