In the early 90's, physicists Bershadsky-Cecotti-Ooguri-Vafa conjectured that the analytic torsion was the counterpart in complex geometry of the counting problem of elliptic curves in Calabi-Yau threefolds. It seems that this conjecture is ...
A function from a group G to integers Z is called a quasi-morphism if there is a constant C such that for all g and h in G, |f(gh)-f(g)-f(h)| < C. Surprisingly, this idea has been useful. I will overview the theory of quasi-morphisms includi...
Chern-Simons invariant and eta invariant for Schottky hyperbolic manifolds
In this talk, I will explain a relationship of the Chern-Simons invariant and the eta invariant for Schottky hyperbolic manifolds. The relating formula involves a defect term given by the Bergman tau function over the conformal boundary Riem...
We rely on intuition every day, and we use mathematics every day. Intuition is fast, powerful and omniapplicable, but sometimes wrong. Mathematics is efficient, powerful and correct, when applicable. Whenever there is an uncertainty, a proof...