<학부생을 위한 ɛ 강연> Symplectic geometry and the three-body problem
We describe some of the history of the three-body problem and how it lead to symplectic geometry. We start by sketching Poincare’s prize-winning work, and discuss how it lead to the birth of the fields of dynamical systems and symplec...
<학부생을 위한 ɛ 강연> Self-Supervised Learning in Computer Vision
In recent years, artificial intelligence has made remarkable progress in developing algorithms that can learn from vast amounts of carefully labeled data. This paradigm of supervised learning has made great success in training specialist mo...
<학부생을 위한 ɛ 강연> Secure computation: Promise and challenges
This talk discusses modern cryptographic techniques, such as zero-knowledge proof, multi-party computation and homomorphic encryption, which provide advanced functionality and security guarantees beyond data privacy and authenticity. I will...
Category수학강연회소속송용수강연자<학부생을 위한 ɛ 강연> Secure computation: Promise and challenges
<학부생을 위한 ɛ 강연> Mathematics and music: Pythagoras, Bach, Fibonacci and AI
In this talk, I will introduce the audience to the original beauty that leads to exploring the mathematical elements in music. I will cover the following topics on the connection between music and mathematics. - Harmonics & equations - ...
We rely on intuition every day, and we use mathematics every day. Intuition is fast, powerful and omniapplicable, but sometimes wrong. Mathematics is efficient, powerful and correct, when applicable. Whenever there is an uncertainty, a proof...
<학부생을 위한 ɛ 강연> Introduction to the incompressible Navier-Stokes equations
In this talk, I will briefly introduce some properties of the incompressible Navier-Stokes equations. Then, I will review some classical results obtained by harmonic analysis tools.
<학부생을 위한 ɛ 강연> Geometry and algebra of computational complexity
학부생을 위한 이 강연에서는 고전적 튜링 기계의 기본적 정의로부터 시작하여 • 튜링기계를 비롯한 다양한 컴퓨터 모델의 복잡도 개념; • 계산(불)가능성 – 특히 디오판틴 방정식의 알고리즘적 해결법 (힐버트의 10번째 문제); • Non-deterministic 튜링 기계...
<학부생을 위한 ɛ 강연> Convergence of Fourier series and integrals in Lebesgue spaces
Convergence of Fourier series and integrals is the most fundamental question in classical harmonic analysis from its beginning. In one dimension convergence in Lebesgue spaces is fairly well understood. However in higher dimensions the probl...
In late 1970's John McKay discovered the astonishing identity 196884=196883+1, which lead Conway and Norton to formulate the famous Monstrous Moonshine conjectures about the Monster group, the largest sporadic finite simple group. The simple...
동형암호(Homomorphic Encryption)는 암호화된 상태에서 복호화없이 계산을 수행하는 암호로서 1978년 제안된 이후 오랜 연구를 거쳐 최근 실용화를 앞두고 있다. 본 강연에서는 우선 동형암호의 개념과 최근 연구결과 그리고 이의 기계학습에의 응용을 소개한...
작용수대수에서 순서구조가 중요한 역할을 한다. C*-대수의 시작이라 할 수 있는 Gelfand-Naimark-Segal 표현정리는 양선형범함수로부터 *-준동형을 만들어내는데, 그 표현정리 이후 여러 가지 종류의 양사상에 대한 연구가 이루어졌다. 최근 활발하게 연구되...
Sufficient conditions for the Jensen polynomials of the derivatives of a real entire function to be hyperbolic are obtained. The conditions are given in terms of the growth rate and zero distribution of the function. As a consequence some r...
The thirteen books "Elements" were written or collected by Euclid of Alexandria about 300 BCE. Many think that "Elements" is the most important example of deductive mathematics. In fact, the Common Notions and the Postulates of Elements are...
<정년퇴임 기념강연> Hardy, Beurling, and invariant subspaces
The invariant subspace problem is one of the longstanding open problem in the field of functional analysis and operator theory. It is due to J. von Neumann (in 1932) and is stated as: Does every operator have a nontrivial invariant subspace...
<2020년도 젊은 과학자상 수상 기념강연> Metastability of stochastic systems
Metastability란 random process가 여러 개의 안정된 상태를 가질 때 반드시 나타나는 현상으로, 수리물리학이나 화학의 여러 모형들은 물론 딥러닝의 알고리즘 등 다양한 곳에서 공통적으로 나타나는 현상이다. 본 강연에서는 이 Metastability를 수학적으로...