https://www.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
  1. Analytic torsion and mirror symmetry

    In the early 90's, physicists Bershadsky-Cecotti-Ooguri-Vafa conjectured that the analytic torsion was the counterpart in complex geometry of the counting problem of elliptic curves in Calabi-Yau threefolds. It seems that this conjecture is ...
    Category수학강연회 소속Kyoto University 강연자Ken-ichi Yoshikawa
    Read More
  2. Deformation spaces of Kleinian groups and beyond

    From 1980’s, the study of Kleinian groups has been carried out in the framework of the paradigm of “Thurston’s problems”. Now they are all solved, and we can tackle deeper problems; for instance to determine the topological types of the defo...
    Category수학강연회 소속Osaka University 강연자Kenichi Ohshika
    Read More
  3. A-infinity functor and topological field theory

    Lagrangian Floer theory in symplectic manifold associate a category (A infinity category) to a symplectic manifold. More than 20 years ago a relation of a relation between Lagrangian Floer theory and Gauge theory was studied by Floer himself...
    Category수학강연회 소속Simons Center for Geometry and Physics 강연자Kenji Fukaya
    Read More
  4. Number theoretic results in a family

    Unconditional results without an unproved hypothesis such as the generalized Riemann hypothesis (GRH) are very weak for an individual number field. But if we consider a family of number fields, one can prove just as strong results as we woul...
    Category수학강연회 소속Univ. of Toronto / KIAS 강연자Kim, Henry
    Read More
  5. Quasi-homomorphisms into non-commutative groups

    A function from a group G to integers Z is called a quasi-morphism if there is a constant C such that for all g and h in G, |f(gh)-f(g)-f(h)| < C. Surprisingly, this idea has been useful. I will overview the theory of quasi-morphisms includi...
    Category수학강연회 소속Kyoto Univ. 강연자Koji Fujiwara
    Read More
  6. Conservation laws and differential geometry

    A fundamental problem in differential geometry is to characterize intrinsic metrics on a two-dimensional Riemannian manifold M2 which can be realized as isometric immersions into R3. This problem can be formulated as initial and/or boundary ...
    Category수학강연회 소속Univ. of Wisconsin 강연자Marshall Slemrod
    Read More
  7. The classification of fusion categories and operator algebras

    ..
    Category수학강연회 소속Kyoto University 강연자Masaki Izumi
    Read More
  8. Sheaf quantization of Hamiltonian isotopies and non-displacability problems

    Sheaf quantization of Hamiltonian isotopies and non-displacability problems
    Category수학강연회 소속Kyoto Univ./서울대학교 강연자Masaki Kashiwara
    Read More
  9. Codimension Three Conjecture

    We proved the codimension three conjecture that says the micro-local perverse sheaves extend if it is defined outside odimension three (counting from Lagrangian subvarity). It is a joint work with Kari Vilonen.
    Category수학강연회 소속교토대학교/서울대학교 강연자Masaki Kashiwara
    Read More
  10. Categorical representation theory, Categorification and Khovanov-Lauda-Rouquier algebras

    Representation theory is to study the actions of groups or algebras on vector spaces. Recently, its categorical version, categorical representation theory, attracts researchers in representation theory. In this theory we replace "vector spac...
    Category수학강연회 소속Kyoto University/서울대학교 강연자Masaki Kashiwara
    Read More
  11. Riemann-Hilbert correspondence for irregular holonomic D-modules

    The original Riemann-Hilbert problem is to construct a liner ordinary differential equation with regular singularities whose solutions have a given monodromy. Nowadays, it is formulated as a categorical equivalence of the category of regular...
    Category수학강연회 소속서울대학교/RIMS 강연자Masaki Kashiwara
    Read More
  12. Convex and non-convex optimization methods in image processing

    In this talk, we discuss some results of convex and non-convex optimization methods in image processing. Examples including image colorization, blind decovolution and impulse noise removal are presented to demonstrate these methods. Their a...
    Category수학강연회 소속Hong Kong Baptist University 강연자Michael Ng
    Read More
  13. A new view of Fokker-Planck equations in finite and Infinite dimensional spaces

    Fokker-Planck and Kolmogorov (backward) equations can be interpreted as linearisations of the underlying stochastic differential equations (SDE). It turns out that, in particular, on infinite dimensional spaces (i.e. for example if the SDE i...
    Category수학강연회 소속Bielefeld Univ./Purdue Univ. 강연자Michael Roeckner
    Read More
  14. Unprojection

    Unprojection or "constructing bigger Gorenstein ideals from smaller one" is an algebraic device for constructing Gorenstein varieties in codimension 4, 5, ..., beyond the range of standard structure theorems; it has a large number of fairly ...
    Category수학강연회 소속University of Warwick / 서강대 강연자Miles Reid
    Read More
  15. Class field theory for 3-dimensional foliated dynamical systems

    I will talk about arithmetic topology, in particular, some issues related to class field theory for 3-dimensional foliated dynamical systems.
    Category수학강연회 소속Kyushu University 강연자Morishita Masanori
    Read More
  16. Connes's Embedding Conjecture and its equivalent

    I will talk on Cannes's Embedding Conjecture, which is considered as one of the most important open problems in the field of operator algebras. It asserts that every finite von Neumann algebra is approximable by matrix algebras in suitable s...
    Category수학강연회 소속RIMS 강연자Narutaka Ozawa
    Read More
  17. Recent progress on the Brascamp-Lieb inequality and applications

    In his survey paper in the Bulletin of the AMS from 2002, R. J. Gardner discussed the Brunn-Minkowski inequality, stating that it deserves to be better known and painted a beautiful picture of its relationship with other inequalities in anal...
    Category수학강연회 소속Saitama University 강연자Neal Bez
    Read More
  18. Unique ergodicity for foliations

    Category수학강연회 소속Université Paris-Sud 강연자Nessim Sibony
    Read More
  19. Idempotents and topologies

    A classical theorem of Jacobs, de Leeuw and Glicksberg shows that a representation of a group on a reflexive Banach space may be decomposed into a returning subspace and a weakly mixing subspace. This may be realized as arising from the idem...
    Category수학강연회 소속University of Waterloo 강연자Nico Spronk
    Read More
  20. Contact Homology and Constructions of Contact Manifolds

    .
    Category수학강연회 소속서울대 강연자Otto van Koert
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Next
/ 15