https://www.math.snu.ac.kr/board/files/attach/images/701/ff97c54e6e21a4ae39315f9a12b27314.png
  1. Geometry, algebra and computation in moduli theory

    I will explain the basic concepts of moduli and how moduli spaces can be constructed in algebraic geometry. Exploring the moduli spaces and issues arising from their construction lead to interesting interplay of geometry, algebra and computa...
    Category수학강연회 소속서울대 강연자현동훈
    Read More
  2. Gromov-Witten-Floer theory and Lagrangian intersections in symplectic topology

    Gromov introduced the analytic method of pseudoholomorphic curves into the study of symplectic topology in the mid 80's and then Floer broke the conformal symmetry of the equation by twisting the equation by Hamiltonian vector fields. We sur...
    Category수학강연회 소속IBS, 포항공과대학교 강연자오용근
    Read More
  3. High dimensional nonlinear dynamics

    In this talk, I am trying to introduce “what is high dimensional chaos” and also my research works in this area.
    Category수학강연회 소속경북대학교 강연자도영해
    Read More
  4. What is model theory?

    I will introduce the basic notions of model theory, a branch of mathematical logic, and survey its applications to other areas of mathematics such as analysis, algebra, combinatorics and number theory. If time permits I will present recent w...
    Category수학강연회 소속연세대 강연자김병한
    Read More
  5. Essential dimension of simple algebras

    The notion of essential dimension was introduced by Buhler and Reichstein in the late 90s. Roughly speaking, the essential dimension of an algebraic object is the minimal number of algebraically independent parameters one needs to define the...
    Category수학강연회 소속KAIST 강연자백상훈
    Read More
  6. Restriction theorems for real and complex curves

    We will talk about the Fourier restriction theorems for non-degenerate and degenerate curves in Euclidean space Rd. This problem was first studied by E. M. Stein and C. Fefferman for the circle and sphere, and it still remains an unsolved pr...
    Category수학강연회 소속포항공과대학교 강연자박종국
    Read More
  7. Recommendation system and matrix completion: SVD and its applications (학부생을 위한 강연)

    이 강연에서는 최근 음악, 영화 추천 등 다양한 Recommendation System의 기본 아이디어인 Matrix Completion 문제와, 이를 해결하기 위해 Singular Value Decomposition을 통한 차원 축소 및 내재 공간 학습이 어떤 원리로 이루어 지는지 설명합니다. 그리고 ...
    Category수학강연회 소속서울대 전기공학부 강연자정교민
    Read More
  8. Deformation spaces of Kleinian groups and beyond

    From 1980’s, the study of Kleinian groups has been carried out in the framework of the paradigm of “Thurston’s problems”. Now they are all solved, and we can tackle deeper problems; for instance to determine the topological types of the defo...
    Category수학강연회 소속Osaka University 강연자Kenichi Ohshika
    Read More
  9. Idempotents and topologies

    A classical theorem of Jacobs, de Leeuw and Glicksberg shows that a representation of a group on a reflexive Banach space may be decomposed into a returning subspace and a weakly mixing subspace. This may be realized as arising from the idem...
    Category수학강연회 소속University of Waterloo 강연자Nico Spronk
    Read More
  10. Recent progress on the Brascamp-Lieb inequality and applications

    In his survey paper in the Bulletin of the AMS from 2002, R. J. Gardner discussed the Brunn-Minkowski inequality, stating that it deserves to be better known and painted a beautiful picture of its relationship with other inequalities in anal...
    Category수학강연회 소속Saitama University 강연자Neal Bez
    Read More
  11. Existence of positive solutions for φ-Laplacian systems

    SNU-LeeAbstract.pdf
    Category수학강연회 소속이용훈 강연자수학강연회,특별강연,대중강연
    Read More
  12. Riemann-Hilbert correspondence for irregular holonomic D-modules

    The original Riemann-Hilbert problem is to construct a liner ordinary differential equation with regular singularities whose solutions have a given monodromy. Nowadays, it is formulated as a categorical equivalence of the category of regular...
    Category수학강연회 소속서울대학교/RIMS 강연자Masaki Kashiwara
    Read More
  13. Normal form reduction for unconditional well-posedness of canonical dispersive equations

    Normal form method is a classical ODE technique begun by H. Poincare. Via a suitable transformation one reduce a differential equation to a simpler form, where most of nonresonant terms are cancelled. In this talk, I begin to explain the not...
    Category수학강연회 소속KAIST 강연자권순식
    Read More
  14. Random conformal geometry of Coulomb gas formalism

    Several cluster interfaces in 2D critical lattice models have been proven to have conformally invariant scaling limits, which are described by SLE(Schramm-Loewner evolution) process, a family of random fractal curves. As the remarkable achie...
    Category수학강연회 소속서울대학교 강연자강남규
    Read More
  15. Categorification of Donaldson-Thomas invariants

    In 1980s, Donaldson discovered his famous invariant of 4-manifolds which was subsequently proved to be an integral on the moduli space of semistable sheaves when the 4-manifold is an algebraic surface. In 1994, the Seiberg-Witten invariant w...
    Category수학강연회 소속서울대학교 강연자김영훈
    Read More
  16. Noncommutative Surfaces

    Many aspects of the differential geometry of embedded Riemannian manifolds, including curvature, can be formulated in terms of multi-linear algebraic structures on the space of smooth functions. For matrix analogues of embedded surfaces, one...
    Category수학강연회 소속서강대학교 강연자Jens Hoppe
    Read More
  17. The Shape of Data

    Creating information and knowledge from large and complex data sets is one the fundamental intellectual challenges currently being faced by the mathematical sciences. One approach to this problem comes from the mathematical subdiscipline cal...
    Category수학강연회 소속Stanford University 강연자Gunnar E. Carlsson
    Read More
  18. Topological Mapping of Point Cloud Data

    One of the important problems in understanding large and complex data sets is how to provide useful representations of a data set. We will discuss some existing methods, as well as topological mapping methods which use simplicial complexes ...
    Category특별강연 소속Stanford University 강연자Gunnar E. Carlsson
    Read More
  19. Structures on Persistence Barcodes and Generalized Persistence

    Persistent homology produces invariants which take the form of barcodes, or nite collections of intervals. There are various structures one can imposed on them to yield a useful organization of the space of all barcodes. In addition, there...
    Category특별강연 소속Stanford University 강연자Gunnar E. Carlsson
    Read More
  20. Persistent Homology

    Homology is a method for assigning signatures to geometric objects which reects the presence of various kinds of features, such as connected components, loops, spheres, surfaces, etc. within the object. Persistent homology is a methodology...
    Category특별강연 소속Stanford University 강연자Gunnar E. Carlsson
    Read More
Board Pagination Prev 1 2 3 4 5 6 7 8 9 10 11 12 Next
/ 12