Volume entropy of a compact manifold is the exponential growth rate of balls in the universal cover. This seemingly coarse invariant contains a lot of geometric information of the manifold. We will discuss some relations to other invariants,...
A hyperplane arrangement is an arrangement of a finite set of hyperplanes in some vector space. Hyperplane arrangements generalize other famous combinatorial objects such as graphs and matroids. In this talk, we introduce a characteristic po...
We introduce the notion of congruences (modulo a prime number) between modular forms of different levels. One of the main questions is to show the existence of a certain newform of an expected level which is congruent to a given modular form...
Geometry, algebra and computation in moduli theory
I will explain the basic concepts of moduli and how moduli spaces can be constructed in algebraic geometry. Exploring the moduli spaces and issues arising from their construction lead to interesting interplay of geometry, algebra and computa...
Weyl character formula and Kac-Wakimoto conjecture
The character of the finite-dimensional irreducible modules over a finite-dimensional simple Lie algebra is given by the celebrated Weyl character formula. However, such a formula does not hold in general for finite-dimensional irreducible m...
Theory and applications of partial differential equations
I will talk in general about theory and applications of partial differential equations. A recent progress in the regularity theory for nonlinear problems will be also discussed, including uniform estimates of solutions in various function sp...
완전동형암호는 암호화된 상태에서 모든 계산을 지원하는 이상적인 암호로서 암호학계의 성배(holy grail)로 불리며 1978년 이후 오랫동안 미해결 문제로 알려져 있었다. 2009년 Gentry에 의해 처음 만들어진 후 많은 연구를 거쳐 실용화를 앞두고 있으며 2011...
Symplectic geometry has one of its origins in Hamiltonian dynamics. In the late 60s Arnold made a fundamental conjecture about the minimal number of periodic orbits of Hamiltonian vector fields. This is a far-reaching generalization of Poinc...
The general theory implies that the distribution of an irreducible Markov chain converges to its stationary distribution as time diverges to infinity. The speed of corresponding convergence is a significant issue in the study of mathematical...
<학부생을 위한 ɛ 강연> Convergence of Fourier series and integrals in Lebesgue spaces
Convergence of Fourier series and integrals is the most fundamental question in classical harmonic analysis from its beginning. In one dimension convergence in Lebesgue spaces is fairly well understood. However in higher dimensions the probl...
Elliptic curves defined over the rationals satisfy two finiteness properties; its group of rational points is a finitely generated abelian group and it has only finitely many points with integral coordinates. Bhargava and his collaborators e...
A modified separation method to solve a heat-transfer boundary value problem
We derive a general solution of the heat equation through two modied separation methods. The obtained solution is expressed as linearly combined kernel solutions in terms of Hermite polynomials, which appears to provide an explanation of non...
2000년 국제수학교육위원회( International Commission on Mathematical Instruction)는 수학교육연구에 탁월한 업적을 이룬 학자에게 수여하는 Freudenthal 메달과 Klein메달을 제정하여, 2003년 부터 홀수 해에 수상하고 있다. 이 강연에서는 2012년 서울에...
Recommendation system and matrix completion: SVD and its applications (학부생을 위한 강연)
이 강연에서는 최근 음악, 영화 추천 등 다양한 Recommendation System의 기본 아이디어인 Matrix Completion 문제와, 이를 해결하기 위해 Singular Value Decomposition을 통한 차원 축소 및 내재 공간 학습이 어떤 원리로 이루어 지는지 설명합니다. 그리고 ...
Mechanization of proof: from 4-Color theorem to compiler verification
I will give a broad introduction to how to mechanize mathematics (or proof), which will be mainly about the proof assistant Coq. Mechanizing mathematics consists of (i) defining a set theory, (2) developing a tool that allows writing definit...