New infinite families of 3-designs from algebraic curves over \mathbb{F}_q

Byeong-Kweon Oh
Department of Applied Mathematics, Sejong University
Seoul, 143-747, Korea

Jangheon Oh *
Department of Applied Mathematics, Sejong University
Seoul, 143-747, Korea

Hoseog Yu
Department of Mathematical Sciences, Seoul National University
Seoul, 151-747, Korea

February 9, 2006

Abstract

In this paper, we show that the stabilizer subgroup of $D^+_f = \{ a \in \mathbb{F}_q | f(a) \in (\mathbb{F}_q^*)^2 \}$ for a $f \in \mathbb{F}_q[x]$ without multiple roots can be derived from the stabilizer of $D^0_f = \{ a \in \mathbb{F}_q | f(a) = 0 \} \cup \{ \infty \}$. As an application, we construct a family of 3-designs such as $3 - (q + 1, q - 1, 2, (q-3)(q-5) \mod 16)$, where q is a prime power such that $q \equiv 3 \mod 4$ and $q \geq 59$.

1 Introduction

A $t - (v, k, \lambda)$ design is a pair (X, \mathcal{B}) where X is a v-element set of points and \mathcal{B} is a collection of k-element subsets of X called blocks, such that every t-element subset of X is contained in precisely λ blocks. For general facts and recent results on t-designs, see [BJH]. There are several ways to construct family of 3-designs, one of them is to use codewords of some particular codes over \mathbb{Z}_4. For example, see [HKY], [HRY], [YH], and [R]. For the list of known families of 3-designs, see [K].

Let \mathbb{F}_q be a finite field with odd characteristic and $\Omega = \mathbb{F}_q \cup \{ \infty \}$, where ∞ is a symbol. Let $G = PGL_2(\mathbb{F}_q)$ be a group of linear fractional

*This work was supported by Korea Research Foundation Grant (KRF-2002-015-CP0049)
transformations. Then, it is well known that the action $PGL_2(\mathbb{F}_q) \times \Omega \rightarrow \Omega$ is triply transitive. Therefore, for any subset $X \subset \Omega$, we have a $3 - (q + 1, |X|, \left\lfloor \frac{|X|}{3} \right\rfloor \times 6/|G_X|)$ design, where G_X is the setwise stabilizer of X in G (see [BJH, Proposition 4.6 in p.175]). In general, it is very difficult to calculate the order of the stabilizer G_X. Letting X be $D_f^+ = \{ a \in \mathbb{F}_q \mid f(a) \in (\mathbb{F}_q^\times)^2 \}$ for $f \in \mathbb{F}_q[x]$, one can derive the order of D_f^+ from the number of solutions of $y^2 = f(x)$. In particular, when $y^2 = f(x)$ is in a certain class of elliptic curves (see Example 3.8 and 3.9), there is an explicit formula for the order of D_f^+. Our main result is as follows: we choose a subset D_f^+ for a certain polynomial f and explicitly compute $|G_{D_f^+}|$, so that we obtain new family of 3-designs. The main step for the computation of $|G_{D_f^+}|$ is to show that the stabilizer of D_f^+ is essentially same as the stabilizer of $D_f^0 = \{ a \in \mathbb{F}_q \mid f(a) = 0 \} \cup \{ \infty \}$. In particular, we calculate the stabilizer of D_f^+ for $\deg(f) \leq 3$ to obtain new family of 3-designs.

Our method is motivated by a recent work of Iwasaki [I]. Iwasaki [I] computed the orders of V and G_V, where V is in our notation $D_f^{-} \cup D_f^0 = \mathbb{F}_q \cup \{ x(x-1)(x+1) \}$ with $f(x) = x(x-1)(x+1)$.

2 Fractional Transformations

Let \mathbb{F}_q be a finite field of order q with odd characteristic and $\Omega = \mathbb{F}_q \cup \{ \infty \}$, where ∞ is a symbol. Let Δ be a fixed nonsquare element in \mathbb{F}_q. For $a \in \mathbb{F}_q$, we denote

$$
\left(\frac{a}{q} \right) =
\begin{cases}
1 & \text{if } a \in (\mathbb{F}_q^\times)^2, \\
0 & \text{if } a = 0, \\
-1 & \text{otherwise}.
\end{cases}
$$

We also define the linear fractional transformation group

$$
PGL_2(\mathbb{F}_q) = \left\{ \rho(x) = \frac{ax + b}{cx + d} \mid a, b, c, d \in \mathbb{F}_q \text{ and } ad - bc = 1 \text{ or } \Delta \right\}.
$$

As a function from Ω to Ω, every $\rho \in PGL_2(\mathbb{F}_q)$ is a bijective function. Note that $|PGL_2(\mathbb{F}_q)| = q(q^2 - 1)$. Denote by $\mathbb{F}_q[x]$ the set of all nonconstant polynomials in $\mathbb{F}_q[x]$ that have no multiple roots in \mathbb{F}_q.

Let $\rho(x) = \frac{ax + b}{cx + d}$ and $s(x) = cx + d$. For any nonnegative integer k, we define $\epsilon(k) = k$ if k is even and $\epsilon(k) = k + 1$, otherwise. For any $f(x) \in \mathbb{F}_q[x]$, we define

$$
f_{\rho}(x) = s(x)^{\epsilon(\deg(f))} f(\rho(x)).
$$

Then, we can easily check that $f_{\rho}(x) \in \mathbb{F}_q[x]$. Furthermore, if $\deg(f)$ is
even, then
\[
\deg(f_{\rho}) = \begin{cases}
\deg(f) - 1 & \text{if } f(\rho(\infty)) = 0, \\
\deg(f) & \text{otherwise}
\end{cases}
\]
and if \(\deg(f) \) is odd, then
\[
\deg(f_{\rho}) = \begin{cases}
\deg(f) & \text{if } f(\rho(\infty)) = 0 \text{ or } \rho(\infty) = \infty, \\
\deg(f) + 1 & \text{otherwise.}
\end{cases}
\]
Note that \((f_{\rho})_\tau = f_{\rho_\tau}^\tau\) for \(\rho, \tau \in \text{PGL}_2(\mathbb{F}_q)\).

Proposition 2.1. Let \(\rho \in \text{PGL}_2(\mathbb{F}_q)\) such that \(\rho(\infty) \neq \infty\) and \(k\) be an odd integer. Then the function \(\Phi_\rho\) from \(\{f \in \mathbb{F}_q[x] \mid \deg(f) = k\}\) to \(\{g \in \mathbb{F}_q[x] \mid g(\rho^{-1}(\infty)) = 0, \deg(g) = k + 1\}\) defined by \(\Phi_\rho(f) = f_{\rho}\) is a bijective function.

Proof. One can easily check that \(\Phi_\rho\) is well-defined and \(\Phi_{\rho^{-1}} = (\Phi_\rho)^{-1}\). \(\square\)

For \(f(x) \in \mathbb{F}_q[x]\), we define
\[
D_f^+ = \left\{ \alpha \in \mathbb{F}_q \mid \frac{f(\alpha)}{q} = 1 \right\} \quad \text{and} \quad D_f^- = \left\{ \beta \in \mathbb{F}_q \mid \frac{f(\beta)}{q} = -1 \right\}.
\]

Lemma 2.2. For \(f(x) \in \mathbb{F}_q[x]\) and \(\rho \in \text{PGL}_2(\mathbb{F}_q)\), we have
\[
\rho \left(D_f^+ \setminus \{\rho^{-1}(\infty)\} \right) = D_f^\delta \setminus \{\rho(\infty)\} \quad \text{for any } \delta \in \{+, -\}.
\]

Proof. Let \(\rho(x) = \frac{ax+b}{cx+d}\) and \(s(x) = cx + d\). Let \(\alpha \in D_{f_{\rho}}^+ \setminus \{\rho^{-1}(\infty)\}\). Since \(\rho(\alpha) \neq \infty\),
\[
1 = \left(\frac{f_{\rho}(\alpha)}{q} \right) = \left(\frac{s(\alpha)^{\deg(f)}f(\rho(\alpha))}{q} \right) = \left(\frac{f(\rho(\alpha))}{q} \right).
\]

Therefore, \(\rho(\alpha) \in D_f^+ \setminus \{\rho(\infty)\}\). Conversely, let \(\beta \in D_f^+ \setminus \{\rho(\infty)\}\). Choose \(\alpha \in \mathbb{F}_q\) such that \(\rho(\alpha) = \beta\). Note that \(s(\alpha) \neq 0\). Therefore,
\[
1 = \left(\frac{f(\beta)}{q} \right) = \left(\frac{s(\alpha)^{\deg(f)}f(\rho(\alpha))}{q} \right) = \left(\frac{f_{\rho}(\alpha)}{q} \right).
\]
The proof of the other case is quite similar. \(\square\)

Corollary 2.3. For \(f(x) \in \mathbb{F}_q[x]\) and \(\rho \in \text{PGL}_2(\mathbb{F}_q)\) such that \(\rho(\infty) \neq \infty\), we have
\[
\sum_{x \in \mathbb{F}_q} \left(\frac{f(x)}{q} \right) - \left(\frac{f(\rho(\infty))}{q} \right) = \sum_{x \in \mathbb{F}_q} \left(\frac{f_{\rho}(x)}{q} \right) - \left(\frac{f_{\rho}(\rho^{-1}(\infty))}{q} \right).
\]
Proof. By the above lemma, it is trivial.

Example 2.4. Let $f(x) = x(x^2 - 1)$ and $\rho(x) = \frac{(-t+1)x}{-(t-1)x+2}$ for $t \neq 0, \pm 1 \pmod{p}$, where $q = p^m$. Then, from the above formula, we have

$$\sum_{x \in \mathbb{F}_q} \left(\frac{x(x-1)(tx-1)((t+1)x-2)}{q} \right) = \left(\frac{1-t}{q} \right) \sum_{x \in \mathbb{F}_q} \left(\frac{x(x^2-1)}{q} \right) - \left(\frac{t(t+1)}{q} \right),$$

which was given by [Wi].

Example 2.5. By combining Corollary 2.3 and the fact that

$$\sum_{x \in \mathbb{F}_q} \left(\frac{x f(x)}{q} \right) = \sum_{x \in \mathbb{F}_q} \left(\frac{f(x^2)}{q} \right) - \sum_{x \in \mathbb{F}_q} \left(\frac{f(x)}{q} \right),$$

we have some new relations between the order of elliptic curves over \mathbb{F}_q.

As an example, let $f(x) = x(x-1)(x - \frac{4\lambda}{(\lambda+1)^2})$ ($\lambda \neq 0, \pm 1 \pmod{p}$) and $\rho(x) = \frac{2\lambda x + 2\lambda}{(\lambda+1)^2 + \lambda}$. Note that $f\rho(x) = 4\lambda^2(\lambda - 1)^2(x^2 - 1)(x^2 - \lambda^2)$. Since

$$\sum_{x \in \mathbb{F}_q} \left(\frac{(x-\alpha)(x-\beta)}{q} \right) = -1$$

for any $\alpha, \beta (\alpha \neq \beta) \in \mathbb{F}_q$ (for this, see Theorem 5.48 of [LN]), we have

$$\sum_{x \in \mathbb{F}_q} \left(\frac{f(x)}{q} \right) = \sum_{x \in \mathbb{F}_q} \left(\frac{f\rho(x)}{q} \right) + 1 = \sum_{x \in \mathbb{F}_q} \left(\frac{x(x-1)(x-\lambda^2)}{q} \right).$$

3 Construction of new family of 3-designs

In this section, we construct new family of 3-designs, which is a generalization of [I].

Lemma 3.1. Let $f(x) \in \mathbb{F}_q[x]$ be a polynomial of degree k. Then

$$\frac{q}{2} - \left[\frac{k-1}{2} \right] \sqrt{q} - \frac{k+1}{2} \leq |D_f^+| \quad \text{and} \quad \frac{q}{2} - \left[\frac{k-1}{2} \right] \sqrt{q} - \frac{k+1}{2} \leq |D_f^-|. $$

Proof. For $k = 1, 2$, we may show these inequalities by direct calculation. So, we assume that $k \geq 3$. Let X be the projectivization of the affine curve $y^2 = f(x)$ and \tilde{X} be it’s normalization. Let $N(X)$ ($N(\tilde{X})$) be the number of rational points of X (\tilde{X}, respectively). Note that the geometric genus g of
Let $h(x) \in \mathbb{F}_q[x]$ be a polynomial of degree k whose leading coefficient is a square in \mathbb{F}_q and $\rho \in PGL_2(\mathbb{F}_q)$. We define $D^\rho_f = \{ \alpha \in \mathbb{F}_q \mid f(\alpha) = 0 \} \cup \{ \infty \}$. Assume that

$$q > \begin{cases} 2k^2 + 2k + 2 + 2k\sqrt{k^2 + 2k + 2} & \text{if } k \text{ is odd} \\ 2k^2 - 2k + 5 + 2(k - 1)\sqrt{k^2 + 4} & \text{otherwise.} \end{cases}$$

Then the followings are equivalent:

(i) $\rho(D^-_f) = D^-_f$;

(ii) $D^+_f = D^+_f$;

(iii) $D^-_f = D^-_f$;

(iv) $f^\rho(x) = bf(x)$ for some $b \in (\mathbb{F}_q^\times)^2$.

If $\rho(D^+_f) = D^+_f$, then $\rho(D^-_f) = D^-_f$ and $\rho(D^\rho_f) = D^\rho_f$, furthermore, $\rho(\infty) = \infty$ when k is even. If k is odd or $\rho(\infty) = \infty$, then $\rho(D^-_f) = D^-_f$ implies $\rho(D^+_f) = D^+_f$.

Proof. Note that for $0 \leq s \leq k - 1$,

$$s + \frac{1 + (-1)^k}{2} < \frac{q}{2} - \left(k - s - \frac{1 + (-1)^k}{2}\right) \sqrt{q} - \frac{2k - 2s + 1 + (-1)^{k+1}}{2}.$$

Clearly, (iv) implies (ii) and (iii). Let $h(x) = \gcd(f(x), f^\rho(x))$ and we write $f(x) = h(x)f(x)$ and $f^\rho(x) = h(x)f^\rho(x)$. Suppose that deg$(h) = s < k$. Then, $\tilde{f}(x)f^\rho(x) \in \mathbb{F}_q[x]$. Therefore, by Lemma 3.1, there is an $\alpha \in \mathbb{F}_q$ such that $h(\alpha) \neq 0$ and $\left(\tilde{f}(\alpha)f^\rho(\alpha) \right) = -1$. Furthermore, by the above inequality, such elements exist at least 2 for even k. Therefore, $D^\delta_{f^\rho} \neq D^\delta_f$ and if k is even and $D^\delta_f \subset D^\delta_{f^\rho}$ then

$$|D^\delta_{f^\rho} - D^\delta_f| \geq 2,$$

for any $\delta \in \{+,-\}$. Consequently, (ii) or (iii) implies (iv). Therefore (ii),(iii) and (iv) are equivalent.

Now, assume that (i) is true. By Lemma 2.2, we have

$$D^\rho_f - \{ \rho^{-1}(\infty) \} = D^-_f.$$
Hence, we may assume that \(k \) is odd by the above observation. In this case,
\[
\rho^{-1}(\infty) \in D_{f}^\perp.
\]Hence, (iii) holds. Conversely, assume that (iii) is true. For
\[
\rho(x) = \frac{ax+b}{cx+d},
\]we define \(s(x) = cx + d \) and \(t(x) = ax + b \). For \(\alpha \in D_{f} = D_{f}^\perp \),
if \(k \) is odd or \(\rho(\infty) = \infty \) or if \(k \) is even and \(\rho(\alpha) \neq \infty \), then
\[
-1 = \left(\frac{s(\alpha)^{(k)} f(\rho(\alpha))}{q} \right) = \left(\frac{f(\rho(\alpha))}{q} \right).
\]
Therefore, we have \(\rho(\alpha) \in D_{f}^\perp \). Note that if \(k \) is even and \(\rho(\alpha) = \infty \), then
\[
f_\rho(\alpha) = t(\alpha)^k \times (\text{leading coefficient of } f). \]
This is a contradiction to the fact that \(\alpha \in D_{f}^\perp \). Therefore, (i) holds.

The proof of \(\rho(D_{f}^+) = D_{f}^+ \implies (ii) \) or (iv) is quite similar to that of
(i) \(\implies \) (iii) or (iv) and the proof of the remaining statements is trivial. \(\square \)

Remark 3.3. Assume that \(2 \in (\mathbb{F}_q^\times)^2 \). Let \(f(x) = x(x-1) \) and \(\rho(x) = \frac{2x-2}{x-2} \).
Then, one can easily show that \(f_\rho(x) = 2f(x) \) and \(\rho(D_{f}^-) = D_{f}^- \). But
\[\rho(D_{f}^+) \neq D_{f}^+. \]

Lemma 3.4. Assume that \(f \) and \(D_{f}^0 \) are defined as in Theorem 3.2. For
\[
\rho(x) = \frac{ax+b}{cx+d} \in \text{PGL}_2(\mathbb{F}_q),
\]define
\[
S(f, \rho) = -(ad-bc) \prod_{\alpha \in D_{f}^0 - \{\frac{1}{\rho}, \infty\}} (a-\alpha c).
\]
Assume that \(\rho(D_{f}^0) = D_{f}^0 \) and in addition that \(\rho(\infty) = \infty \) when the degree
of \(f \) is even. Then
\[
\rho(D_{f}^+) = \begin{cases}
D_{f}^- & \text{if } k \equiv 1 \pmod{2}, \ \rho(\infty) \neq \infty \text{ and } S(f, \rho) \notin (\mathbb{F}_q^\times)^2, \\
D_{f}^+ & \text{if } k \equiv 1 \pmod{2}, \ \rho(\infty) = \infty \text{ and } ad \notin (\mathbb{F}_q^\times)^2, \\
D_{f}^- & \text{otherwise}.
\end{cases}
\]

Proof. First assume that \(k \equiv 1 \pmod{2} \) and \(\rho(\infty) \neq \infty \). Set \(f(x) = \epsilon(x - \alpha_1) \times \cdots \times (x - \alpha_k) \), \(\rho(\infty) = \alpha_j \) and \(\rho(\alpha_i) = \infty \), where \(\epsilon \in \mathbb{F}_q^\times \) and \(\alpha_i \in \mathbb{F}_q \).
Then,
\[
f_\rho(x) = S(f, \rho) f(x).
\]
The first case follows from this. Since the other cases are quite trivial, the
proofs are left to the readers. \(\square \)

From now on, we assume that \(-1 \notin (\mathbb{F}_q^\times)^2 \) and \(q \neq 3 \). Note that \(q \equiv 3 \pmod{4} \). Let \(X \) be a subset of \(\Omega \) and \(G = \text{PSL}_2(\mathbb{F}_q) \) be the projective
special linear group over \(\mathbb{F}_q \). Denote by \(G_X \) the setwise stabilizer of \(X \) in \(G \). Define \(\mathcal{B} = \{ \rho(X) \mid \rho \in G \} \). Then, it is well known that \((\Omega, \mathcal{B}) \) is
a \(3 - \left(q + 1, |X|, \frac{|X|}{3} \right) \times 3/|G_X| \) design (see, for example, Chapter 3 of
Therefore, if we could compute the order of the stabilizer \(G_X\), then we obtain a 3-design. In [I], Iwasaki constructed a new family of 3-designs by considering the set \(D_f^+\) for \(f(x) = x(x-1)(x+1)\) (in his notation, \(\overline{V} = D_f^+\)).

Now, we consider the set \(D_f^+\), when \(f(x)\) with degree 3 has three distinct roots in \(\mathbb{F}_q\). In this case, there exists a \(\rho \in PSL_2(\mathbb{F}_q)\) such that
\[
\rho^{-1}(\{\text{roots of } f, \infty\}) = \{0, 1, \lambda, \infty\}
\]
for some \(\lambda \in \mathbb{F}_q - \{0, 1\}\). Then, \(f_\rho(x) = \epsilon x(x-1)(x-\lambda)\) for some \(\epsilon \in \mathbb{F}_q^\times\). But by Lemma 2.2, the 3-design for \(D_f^+\) is isomorphic to the 3-design for \(D_f^\rho\). Thus, we only consider polynomials of the form \(f(x) = x(x-1)(x-\lambda)\) for \(\lambda \in \mathbb{F}_q\).

Lemma 3.5. For \(\lambda \in \mathbb{F}_q - \{0, 1\}\), let \(D_\lambda = \{0, 1, \lambda, \infty\}\) and \(E(\lambda) = \{\rho \in G = PSL_2(\mathbb{F}_q) \mid \rho(D_\lambda) = D_\lambda\}\). There is an element of order 3 in \(E(\lambda)\) if and only if \(\lambda\) is a root of \(x^2 - x + 1 = 0\). In this case, \(E(\lambda) \simeq A_4\). When \(E(\lambda)\) does not contain an element of order 3,
\[
E(\lambda) \simeq \begin{cases}
\mathbb{Z}_4 & \text{if } 2 \in (\mathbb{F}_q^\times)^2 \text{ and } \lambda = 2, -1 \text{ or } \frac{1}{2}, \\
\mathbb{Z}_2 \oplus \mathbb{Z}_2 & \text{if } -\lambda, \lambda - 1 \in (\mathbb{F}_q^\times)^2, \\
\mathbb{Z}_2 & \text{otherwise}.
\end{cases}
\]

Proof. For the first assertion, see [BJH]. Assume that \(E(\lambda) \simeq \mathbb{Z}_4\). Then \(E(\lambda)\) contains an element \(\sigma\) satisfying
\[
(\sigma(0), \sigma(1), \sigma(\lambda), \sigma(\infty)) = (1, \lambda, \infty, 0), \ (1, \infty, 0, \lambda), \ \text{or} \ (\lambda, \infty, 1, 0).
\]
For each case, we may easily check that \(\lambda \in \{2, -1, 1/2\}\) and \(2 \in (\mathbb{F}_q^\times)^2\).

Since the other cases can be done in a similar manner, the proofs are left to the readers.

Corollary 3.6. For \(\lambda \in \mathbb{F}_q - \{0, 1\}\), let \(f_\lambda(x) = x(x-1)(x-\lambda)\). Then, the stabilizer \(H(\lambda)\) of \(D_f^\lambda\) in \(PSL_2(\mathbb{F}_q)\) is
\[
H(\lambda) \simeq \begin{cases}
A_4 & \text{if } \lambda^2 - \lambda + 1 = 0, \\
\mathbb{Z}_2 \oplus \mathbb{Z}_2 & \text{if } -\lambda, \lambda - 1 \in (\mathbb{F}_q^\times)^2 \text{ and } \lambda^2 - \lambda + 1 \neq 0, \\
\mathbb{Z}_2 & \text{otherwise}.
\end{cases}
\]

Proof. We use Lemma 3.4 to prove our assertion. It suffices to check that \(\rho(D_f^\lambda) = D_f^\lambda\) or \(D_f^\lambda\) for \(\rho \in E(\lambda)\). For example, assume that \(\lambda = -1\) and \(2 \in (\mathbb{F}_q^\times)^2\). One of elements \(\tau \in E(\lambda)\) of order 4 has the form \(\tau(x) = \frac{-x+1}{x-1}\). One may easily check by Lemma 3.4 that \(\tau(D_f^\lambda) = D_f^\lambda\). Therefore, \(H(\lambda)\) does not contain an element of order 4 and hence \(H(\lambda) \simeq \mathbb{Z}_2\). All other cases can be done in a similar manner.

We give some examples of 3-designs by using our method. If \(\deg(f) = 3\), we may apply some results on the number of rational points of elliptic curves over \(\mathbb{F}_q\) to compute the order of \(D_f^\lambda\).
Example 3.7. Assume that \(q \equiv 3 \pmod{4} \) and \(q \geq 19 \). Let \(f(x) = x(x-1) \). Then the stabilizer subgroup of \(D_f^+ \) in \(\text{PSL}_2(\mathbb{F}_q) \) is trivial. Hence, we have \(3 - (q + 1, \frac{q-3}{2}, \frac{(q-5)(q-7)}{16}) \) designs. On the other hand, the stabilizer subgroup of \(D_f^+ \) in \(\text{PSL}_2(\mathbb{F}_q) \) is

\[
\left\{ \rho_s(x) = \frac{x}{(1 - s)x + s} \mid s \in (\mathbb{F}_q^\times)^2 \right\}.
\]

Therefore, we have \(3 - (q + 1, \frac{q-1}{2}, \frac{(q-3)(q-5)}{8}) \) designs.

Example 3.8. Assume that \(q \equiv 3 \pmod{4} \) and \(q \geq 59 \). Let \(f(x) = x(x^2 + 1) \). Then, one may easily show that the stabilizer subgroup of \(D_f^+ \) is trivial by Theorem 3.2 and Lemma 3.4. Furthermore, by Lemma 4.13, Theorem 4.21 of [Wa], the elliptic curve defined by \(f \) is supersingular and the number of rational points is \(q + 1 \). Hence \(|D_f^+| = \frac{q-1}{2} \). Therefore, we have \(3 - (q + 1, \frac{q-1}{2}, \frac{(q-3)(q-5)}{8}) \) designs.

Example 3.9. Assume that \(q \equiv 7 \pmod{12} \) and \(q \geq 43 \). Let \(f(x) = x(x-1)(x-\lambda) \), where \(\lambda \in \mathbb{F}_q \) is a primitive 6-th root of unity. One may easily check that the stabilizer of \(D_f^+ \) is \(A_4 \) by Corollary 3.6. Therefore, we have \(3 - \left(q + 1, |D_f^+|, \left(\frac{|D_f^+|}{3} \right) \right) \) designs. If \(q = p \) is a prime, it is well known (see Theorem 4.1 of [BE]) that \(|D_f^+| = \frac{p-3}{2} - \left(\frac{\lambda+1}{p} \right) x \), where \(x \) is the integer uniquely determined by \(x^2 + 3y^2 = p \) and \(x \equiv -1 \pmod{3} \). If \(q \) is a prime power, then one can use, for example, Theorem 4.12 and Lemma 4.13 of [Wa] to compute \(|D_f^+| \). For \(X = \{0, 1, \lambda, \infty\} \), the 3-design obtained from this case, see Example 6.17 of [BJH].

Remark 3.10. Let \(\widetilde{G} = \text{PGL}_2(\mathbb{F}_q) \). Then we have \(3 - (q + 1, |X|, \left(\frac{|X|}{3} \right) \times 6/|\widetilde{G}_X|) \) designs. Theorem 3.2 says that the stabilizer subgroup of \(D_f^+ \) is a subgroup of the stabilizer subgroup \(D_0^f \) for any large odd prime power \(q \). If \(\deg(f) \) is small enough, this is very useful for any group \(G \). For example, the stabilizer subgroup of \(\{0, 1, \lambda, \infty\} \) in \(\widetilde{G} \) is well known (see, for example, Proposition 8.5 of [BJH]). Similarly to the Corollary 3.6, we may easily compute the stabilizer subgroup of \(D_f^+ \) for \(f(x) = x(x-1)(x-\lambda) \) by using Lemma 3.4. If \(|\widetilde{G}_X| \neq 2|G_X| \), we may have another 3-designs having different parameters to our cases.
References

