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Abstract. A positive definite quadratic form f is said to be regular
if it globally represents all integers that are represented by the genus
of f . In 1997, Jagy, Kaplansky and Schiemann provided a list of 913
candidates of primitive positive definite regular ternary quadratic forms
and stated that there are no others. All but 22 of 913 are already verified
to be regular (cf. [8]). In this article we prove that among 22 candidates
the ternary form L(i) (for the definition, see Table 4.1) is regular for
every i = 6, 11, 17, 18, 19, 20, 21 and 22.

1. Introduction

A positive definite integral quadratic form f is called regular if f repre-

sents all integers that are represented by the genus of f . Regular quadratic

forms were first studied systematically by Dickson in [4] where the term

“regular” was coined. Jones and Pall in [9] classified all primitive positive

definite diagonal regular ternary quadratic forms. In the last chapter of his

doctoral thesis [15], Watson showed by arithmetic arguments that there are

only finitely many equivalence classes of primitive positive definite regular

ternary forms. More generally, a positive definite integral quadratic form

f is called n-regular if f represents all quadratic forms of rank n that are

represented by the genus of f . It was proved in [2] that there are only

finitely many positive definite primitive n-regular forms of rank n + 3 for

n ≥ 2. See also [13] on the structure theorem of n-regular forms for higher

rank cases.

The problem of enumerating the equivalence classes of the primitive pos-

itive definite regular ternary quadratic forms was recently resurrected by

Kaplansky and his collaborators [8]. They provided a list of 913 candidates

of primitive positive definite regular ternary forms and stated that there

are no others. All but 22 of 913 are already verified to be regular. In fact,

their algorithm relies on the complete list of those regular ternary quadratic

forms with square free discriminant [17] and a method of descent set forth

by Watson in [15]. This method of descent involves a collection of transfor-

mations which change a regular ternary form to another one with smaller
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discriminant and simpler local structure, and it is this method which en-

ables Watson to obtain the explicit discriminant bounds for regular ternary

quadratic forms.

There are 794 primitive positive definite ternary quadratic forms having

class number 1, and those forms are regular. If a positive ternary form f has

class number bigger than 1, as far as the author knows, there is no general

method of determining the set of all integers that are represented by f . In

1990, Duke and Schulze-Pillot proved in [5] that for any positive definite

ternary form f , there is a constant C depending only on f such that every

integer a greater than C is represented by f if a is primitively represented

by the spinor genus of f . However, there is no known effective method of

computing the constant C explicitly.

There are some methods on proving regularity of a particular ternary

form f having class number greater than 1. One method is using some other

form having class number 1 related with f , and some specific modularity

depending on the form f (cf. [4], [7], [8], [9] and [17]). Another method is

to prove that the spinor class number of f is one and there are no spinor

exceptional integers (cf. [6], [10] and [11]). These two methods provide the

proof of the regularity of 913 − (794 + 22) = 97 ternary forms. Note that

the second method is not available for proving regularity of the remaining

22 candidates.

In this paper, we show that the ternary form L(i) (for the definition

of each form, see Table 4.1) is regular for every i = 6, 11, 17, 18, 19, 20, 21

and 22. Our method is quite similar to the former one explained above.

However we use a ternary lattice representing the candidate, whereas the

traditional method uses a genus mate, that is, a lattice in the genus of the

candidate, or a sublattice of the candidate. We also use one more fact that

the number of representations of a by f is always finite, for any integer a

and any positive definite quadratic form f .

The term lattice will always refer to an integral Z-lattice on an n-

dimensional positive definite quadratic space over Q. The scale and the

norm ideal of a lattice L are denoted by s(L) and n(L) respectively. Let

L = Zx1 + Zx2 + · · ·+ Zxn be a Z-lattice of rank n. We write

L ' (B(xi, xj)).

The right hand side matrix is called a matrix presentation of L.

Throughout this paper, we always assume that every Z-lattice L is pos-

itive definite and is primitive in the sense that s(L) = Z. In particular, the

Z-lattice L(i) denotes one of 22 candidates of regular ternary forms, which
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are defined in Table 4.1 of Section 4. A Z-lattice L is called odd if n(L) = Z,

even otherwise.

For any Z-lattice L, Q(gen(L)) (Q(L)) denotes the set of all integers that

are represented by the genus of L (L itself, respectively). In particular, we

call an integer a eligible if a ∈ Q(gen(L)) following Kaplansky.

Any unexplained notations and terminologies can be found in [12] or

[14].

2. General Tools

Let L be a Z-lattice. For any positive integer m, define

Λm(L) = {x ∈ L : Q(x+ z) ≡ Q(z) (mod m) for all z ∈ L}.

The Z-lattice λm(L) denotes the primitive lattice obtained from Λm(L)

by scaling L ⊗ Q by a suitable rational number. For the properties of this

transformation, see [3] or [16].

Lemma 2.1. Let p be a prime and L be a Z-lattice. If p is odd and a

unimodular component of Lp is anisotropic, or p = 2 and L is odd or L2 '
( 2 1

1 2 ) ⊥ 〈4α〉 for some α ∈ Z2, then

Q(L) ∩ δpZ = Q(Λδp(L)) and Q(gen(L)) ∩ δpZ = Q(gen(Λδp(L))),

where δ = 2 if p = 2 and L is even, δ = 1 otherwise.

Proof. The proof is quite straightforward. See, for example, [3]. �

Under the same assumption as above, the lemma implies the following:

If L is regular then λδp(L) is also regular, and conversely if λδp(L) is regular,

then (Q(gen(L)) − Q(L)) ∩ δpZ = ∅. For each i = 1, 2, . . . , 22, one may

easily show that λδp(L(i)) is regular or λδp(L(i)) = L(j) for some j, where

p is any prime satisfying the condition given in the lemma. For example,

λ3(L(17)) '

3 1 1
1 7 3
1 3 7

 ,

which is a regular form, and

λ3(L(8)) ' L(4), λ3(L(1)) ' L(4) and λ3(L(4)) ' L(1).

Hence if L(8) is regular, then both L(1) and L(4) are also regular.

From now on we will use the matrix presentation of each Z-lattice. Let

M and N be any quadratic forms of rank m and n respectively and ` be
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any positive integer. We denote by R(N,M) the set of all representations

from N to M , that is,

R(N,M) = {T ∈Mm,n(Z) | T tMT = N}.

Let r be any nonnegative integer less than `. We define

R`(r,N) = {x ∈Mn,1(Z/`Z) | xtNx ≡ r (mod `)}.

For any subset S ⊂Mn,1(Z), we define

S` = {x` = (φ(x1), φ(x2), . . . , φ(xn))t | x = (x1, x2, . . . , xn)t ∈ S},

where φ : Z 7→ Z/`Z is a natural projection map.

The following simple observation is the starting point of our method.

Lemma 2.2. Let a be a positive integer such that a = xtNx for some

x ∈ Mn,1(Z). If there is a T ∈ R(`2N,M) such that Tx ∈ `Mm,1(Z), then

a is represented by M .

Proof. Note that(
1

`
Tx

)t
M

(
1

`
Tx

)
=

1

`2
xt(T tMT )x = xtNx = a.

The lemma follows directly from this. �

We define

EM
` (r,N) = {x ∈ R`(r,N) | ∀T ∈ R(`2N,M), Tx 6∈ `Mm,1(Z/`Z)}.

Every computation such as EM
` (r,N) for some M,N, r and ` was done by

the computer program MAPLE.

The following theorem is very useful in showing that every eligible inte-

ger of M in a certain arithmetic progression is represented by a particular

quadratic form M .

Theorem 2.3. For any integer a ∈ Q(N) such that a ≡ r (mod `), if

(∗) R(a,N)` − E
M
` (r,N) 6= ∅

then a is represented by M . In particular, if EM
` (r,N) = ∅ then

Q(N) ∩ {a ∈ Z | a ≡ r (mod `)} ⊂ Q(M).

Proof. Assume that there is an x ∈ R(a,N) such that x` 6∈ EM
` (r,N). Then

there is a T ∈ R(`2N,M) such that Tx ∈ `Mm,1(Z). Hence the theorem

follows from Lemma 2.2. �
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3. Regular ternary forms

In this section we show that all eight forms marked with bold face in

Table 4.1 are regular. Note that

λ3(L(18)) = L(20), λ3(L(20)) = L(18)

and λ5(L(19)) = L(22), λ5(L(22)) = L(19).

Hence if L(18) and L(19) are regular, L(20) and L(22) are also regular.

Therefore it is enough to show that L(i) is regular for i = 6, 11, 17, 18, 19, 21.

Theorem 3.1. The ternary form L(17) is regular.

Proof. Let

M = L(17) =

7 2 2
2 8 0
2 0 20

 , N =

3 1 1
1 7 3
1 3 7

 .

Note that dM = 24 · 32 · 7 and dN = 24 · 7. Furthermore

M3 ' 〈1, 1, 32〉 and N3 ' 〈1, 1, 1〉.

One may easily show that λ3(M) = N and M is represented by N . By a

direct computation, we have

R(9N,M) =
{( −1 −3 −1

1 0 −2
1 0 1

)
,
( −1 −1 −3

1 −2 0
1 1 0

)
,
(

1 1 3
−1 2 0
−1 −1 0

)
,
(

1 3 1
−1 0 2
−1 0 −1

)}
,

and

R3(1, N) =


0

0
1

 ,
0

0
2

 ,
0

1
0

 ,
0

2
0

 ,
1

2
2

 ,
2

1
1

 ,

R3(2, N) =


0

1
1

 ,
0

1
2

 ,
0

2
1

 ,
0

2
2

 ,
1

0
2

 ,
1

1
2

 ,
1

2
0

 ,
1

2
1

 ,
2

0
1

 ,
2

1
0

 ,
2

1
2

 ,
2

2
1

 .

Furthermore R(9N,N) contains the following 4 isometries:(
1 −4 −2
−2 −1 −2
0 0 3

)
,
(

1 −2 −4
0 3 0
−2 −2 −1

)
,
(

3 2 2
0 0 −3
0 −3 0

)
,
(

1 4 4
1 1 −2
1 −2 1

)
.

In fact, |R(9N,N)| = 20 (see Table 4.2), but we only need these 4 repre-

sentations. We denote by Si the i-th matrix given above for i = 1, . . . , 4.

Let a be any eligible integer of M . Since M is represented by N and

h(N) = 1 (cf. [8]), a is represented by N . Let x = (x1, x2, x3)
t be a vector

such that xtNx = a.

Assume that a ≡ 0 (mod 3). Since the unimodular component of M3 is

anisotropic, one may easily show that M represents a by Lemma 2.1.

Assume that a ≡ 1 (mod 3). In this case, one may easily show that

EM
3 (1, N) = ∅. Hence M represents a by Theorem 2.3.
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Finally, assume that a ≡ 2 (mod 3). If (∗) does hold, then Theorem

2.3 gives the desired conclusion that a is represented by M . So it is only

necessary to consider further the case that (∗) does not hold; that is,

(3.1) R(a,N)3 ⊂ EM
3 (2, N).

Note that

EM
3 (2, N) = {(0,±1,±1)t, (0,±1,∓1)t}.

Hence we may further assume that

(x1, x2, x3) ≡ (0,±1,±1) or (0,±1,∓1) (mod 3).

Assume that x = (x1, x2, x3)
t ≡ (0,±1,±1)t (mod 3). Since S1, S2 ∈

R(9N,N) and S1x, S2x ∈ 3M3,1(Z),

1

3
S1x,

1

3
S2x ∈ R(a,N).

Hence, from the assumption (3.1), we have

x1 − 4x2 − 2x3

3
≡ x1 − 2x2 − 4x3

3
≡ 0 (mod 3).

If we let x1 = 3s and x2 − x3 = 3t for s, t ∈ Z, then

s− 2x3 − 4t ≡ s− 2x3 − 2t ≡ 0 (mod 3).

Therefore t ≡ s+ x3 ≡ 0 (mod 3). From this follows

−2x1 − x2 − 2x3

3
≡ x3 (mod 3) and x2 ≡

−2x1 − 2x2 − x3

3
(mod 3).

This implies that

1

3
Six ≡ (0, 1, 1)t (mod 3) or (0,−1,−1)t (mod 3),

for i = 1, 2. Define a matrix T such that

9 · T = S1S2 =

 5 −10 −2
2 5 10
−6 −6 −3

 .

From the above observation, we have T nx ∈ R(a,N) for every nonnegative

integer n. From the fact that R(a,N) is finite, it then follows that there exist

positive integers n > m for which T nx = Tmx, that is, Tm(T n−m− I)x = 0.

Note that there is a transition matrix P such that

T = P−1

1 0 0
0 λ1 0
0 0 λ2

P,

where λ1, λ2 are complex roots of 9t2 + 2t+ 9 = 0. Hence dim(ker(T n−m −
I)) = 1. Furthermore since 〈(−3, 1, 1)t〉 = ker(T − I) ⊂ ker(T n−m − I), we

have

x ∈ ker(T n−m − I) = 〈(−3, 1, 1)t〉.
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If x = (−3k, k, k)t, one may easily verify that

a = xtNx = 35k2 = (k, k,−k)M(k, k,−k)t.

Now assume that x = (x1, x2, x3)
t ≡ (0,±1,∓1)t (mod 3). In this case, we

may apply the similar argument to the above by just replacing S1 and S2

by S3 and S4, respectively. This completes the proof. �

For the quadratic form L(18), we take ` = 8 and N = λ4(L(18)) =(
4 2 0
2 7 3
0 3 7

)
, which is a regular form. Note that

L(18)2 ' 〈7〉 ⊥
(

0 8
8 0

)
.

Therefore we may only consider an eligible integer a of L(18) that is con-

gruent to 7 modulo 8. Since there are too many isometries, for example

|R(64N,N)| = 88, we do not write them down here. In this case, one may

easily show that

E
L(18)
8 (7, N) = {(±2,±4,±1)t, (±2,±4,±5)t}.

If we choose S1 =
(

7 4 −6
−5 4 2
5 4 6

)
, S2 =

(
4 0 8
4 0 −8
−4 −8 0

)
∈ R(64N,N), then Six ∈

8M3,1(Z/8Z) for any i = 1, 2 and x ∈ EL(18)
8 (7, N). Hence if we apply the

same method described above in this situation, we may easily show that

a is represented by L(18). For the quadratic form L(21), we take ` = 8

and N = λ4(L(21)) =
(

4 2 0
2 11 5
0 5 15

)
. Note that L(21)2 ' 〈3〉 ⊥

(
0 8
8 0

)
and

E
L(21)
8 (3, N) = {(±1,±6,±7)t, (±3,±2,±5)t}. In this case, we may use(
8 8 0
−2 −4 −10
2 −4 2

)
,
(

7 9 −3
−3 −5 −9
3 −3 1

)
∈ R(64N,N).

Since all computations are quite similar to the case L(17), we only pro-

vide a table containing all parameters needed for computations, for the

remaining 3 quadratic forms (cf. Table 4.2).

Remark 3.2. The method described in this article could also be effective

even if M is not regular. For example, one may show that every eligible

integer of the form 6n + 5 is represented by the Ramanujan form M =(
1 0 0
0 1 0
0 0 10

)
by taking ` = 3 and N =

(
2 0 0
0 3 1
0 1 7

)
. In case when M =

(
4 0 1
0 6 0
1 0 10

)
, one

may also show that every eligible integer of the form 6n + 4 is represented

by M by taking ` = 3 and N =
(

4 1 1
1 4 1
1 1 16

)
(cf. Lemma 8.3 of [1]). In both

cases, h(M) = 2 and N is contained in the genus of M .
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4. Tables

In the following table, the regularity of 8 ternary forms marked with bold

face was proved in this article.

L(1) =

0@2 1 1
1 10 2
1 2 26

1A , L(2) =

0@2 0 1
0 12 3
1 3 26

1A , L(3) =

0@4 1 2
1 10 2
2 2 22

1A ,

L(4) =

0@6 3 3
3 10 3
3 3 30

1A , L(5) =

0@2 0 1
0 20 5
1 5 58

1A , L(6) =

0@4 1 1
1 14 −6
1 −6 44

1A ,

L(7) =

0@10 2 1
2 16 −4
1 −4 22

1A , L(8) =

0@10 3 3
3 18 9
3 9 30

1A , L(9) =

0@10 3 5
3 18 6
5 6 34

1A ,

L(10) =

0@4 0 1
0 30 15
1 15 64

1A , L(11) =

0@14 2 7
2 16 6
7 6 46

1A , L(12) =

0@10 3 3
3 18 0
3 0 54

1A ,

L(13) =

0@10 1 3
1 26 −6
3 −6 66

1A , L(14) =

0@18 6 3
6 22 −4
3 −4 58

1A , L(15) =

0@22 3 6
3 30 −3
6 −3 78

1A ,

L(16) =

0@3 1 1
1 6 2
1 2 14

1A , L(17) =

0@7 2 2
2 8 0
2 0 20

1A , L(18) =

0@7 3 1
3 15 −3
1 −3 23

1A ,

L(19) =

0@11 4 1
4 16 4
1 4 19

1A , L(20) =

0@5 2 2
2 20 −4
2 −4 68

1A , L(21) =

0@11 4 1
4 16 4
1 4 51

1A ,

L(22) =

0@7 1 2
1 23 6
2 6 92

1A .

(4.1) 22 candidates of regular ternary forms
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d(L(i)) N L(i)3

±R(9N,L(i)) ±R(9N,N)

L(i) ±R3(1, N) ±R3(2, N)

E
L(i)
3 (1, N) E

L(i)
3 (2, N)

S1, S2 ∈ R(9N,N) S3, S4 ∈ R(9N,N)

2 · 32 · 53 λ3(L(6)) =
“

4 2 1
2 6 3
1 3 14

”
〈1, 1, 32〉“

3 1 0
0 1 3
0 1 0

”
,
“

3 1 1
0 1 −2
0 1 1

” „
1 2 −4
1 2 5
1 −1 −1

«
,

„
1 2 6
1 2 −3
1 −1 0

«
,

„
1 2 −4
2 1 4
−1 1 1

«
,

„
1 2 6
2 1 −3
−1 1 0

«
,
“

1 4 2
2 −1 −2
0 0 3

”
,„

1 4 2
2 −1 1
0 0 −3

«
,
“

3 0 0
−2 −3 −3
0 0 3

”
,

„
3 0 0
−2 −3 0
0 0 −3

«
,
“

3 0 0
0 3 0
0 0 3

”
,
“

3 0 0
0 3 3
0 0 −3

”
L(6)

h
1
0
0

i
,
h

1
0
2

i
,
h

1
2
1

i h
0
0
1

i
,
h

0
1
1

i
,
h

0
1
2

i
,
h

1
0
1

i
,
h

1
1
0

i
,
h

1
1
2

i
∅ (0,±1,±1), (±1,±1, 0)“

3 0 0
−2 −3 −3
0 0 3

”
,

„
1 4 2
2 −1 1
0 0 −3

« „
1 2 −4
2 1 4
−1 1 1

«
,

„
1 2 6
1 2 −3
1 −1 0

«
23 · 32 · 53 λ3(L(11)) =

“
6 3 2
3 14 1
2 1 14

”
〈1, 1, 32〉„

1 −2 1
1 1 −2
−1 −1 −1

«
,

„
1 3 1
1 0 −2
−1 0 −1

« „
1 −1 −4
0 3 0
−2 −1 −1

«
,

„
1 2 −4
0 −3 0
−2 −1 −1

«
,

„
2 0 −3
1 0 3
−1 −3 0

«
,

„
2 2 −3
1 1 3
−1 2 0

«
,

„
3 0 0
−1 0 −3
−1 −3 0

«
,„

3 3 0
−1 −1 −3
−1 2 0

«
,
“

3 0 0
0 3 0
0 0 3

”
,
“

3 0 2
0 3 0
0 0 −3

”
,
“

3 3 0
0 −3 0
0 0 3

”
,

„
3 3 2
0 −3 0
0 0 −3

«
L(11)

h
1
0
2

i
,
h

1
1
1

i
,
h

1
1
2

i h
0
0
1

i
,
h

0
1
0

i
,
h

0
1
2

i
,
h

1
1
0

i
,
h

1
2
0

i
,
h

1
2
2

i
∅ (0, 0,±1), (±1,±1, 0)“

3 3 0
0 −3 0
0 0 3

”
,

„
3 0 0
−1 0 −3
−1 −3 0

« „
3 3 2
0 −3 0
0 0 −3

«
,

„
1 2 −4
0 −3 0
−2 −1 −1

«
24 · 32 · 7 λ3(L(17)) =

“
3 1 1
1 7 3
1 3 7

”
〈1, 1, 32〉„

1 1 3
−1 2 0
−1 −1 0

«
,

„
1 3 1
−1 0 2
−1 0 −1

« “ 1 −4 −2
−2 −1 −2
0 0 3

”
,
“ 1 −2 −4
−2 −2 −1
0 3 0

”
,

„
1 −4 −2
0 0 3
−2 −1 −2

«
,

„
1 −2 −4
0 3 0
−2 −2 −1

«
,

„
1 4 4
1 −2 1
1 1 −2

«
,„

1 4 4
1 1 −2
1 −2 1

«
,
“

3 0 0
0 0 3
0 3 0

”
,
“

3 0 0
0 3 0
0 0 3

”
,

„
3 2 2
0 −3 0
0 0 −3

«
,

„
3 2 2
0 0 −3
0 −3 0

«
L(17)

h
0
0
1

i
,
h

0
1
0

i
,
h

1
2
2

i h
0
1
1

i
,
h

0
1
2

i
,
h

1
0
2

i
,
h

1
1
2

i
,
h

1
2
0

i
,
h

1
2
1

i
∅ (0,±1, ,±1), (0,±1,∓1)“ 1 −4 −2

−2 −1 −2
0 0 3

”
,

„
1 −2 −4
0 3 0
−2 −2 −1

« „
3 2 2
0 0 −3
0 −3 0

«
,

„
1 4 4
1 1 −2
1 −2 1

«
26 · 32 · 5 λ3(L(19)) =

“
3 1 1
1 11 3
1 3 11

”
〈1, 1, 32〉“

0 0 3
1 2 0
−1 1 0

”
,
“

0 3 0
1 0 2
−1 0 1

” „
1 −4 −4
−1 −2 1
−1 1 −2

«
,

„
1 −4 −4
−1 1 −2
−1 −2 1

«
,
“

2 1 5
0 3 0
1 −1 −2

”
,
“

2 5 1
0 0 3
1 −2 −1

”
,
“

2 1 5
1 −1 −2
0 3 0

”
,“

2 5 1
1 −2 −1
0 0 3

”
,
“

3 0 0
0 0 3
0 3 0

”
,
“

3 0 0
0 3 0
0 0 3

”
,

„
3 2 2
0 −3 0
0 0 −3

«
,

„
3 2 2
0 0 −3
0 −3 0

«
L(19)

h
0
1
1

i
,
h

0
1
2

i
,
h

1
0
1

i
,
h

1
1
0

i
,
h

1
1
2

i
,
h

1
2
1

i h
0
0
1

i
,
h

0
1
0

i
,
h

1
1
1

i
(0,±1,±1), (0,±1,∓1) ∅“

3 0 0
0 0 3
0 3 0

”
,
“

2 5 1
1 −2 −1
0 0 3

”
for (0,±1,±1)

„
3 2 2
0 −3 0
0 0 −3

«
,

„
1 −4 −4
−1 1 −2
1 −2 1

«
for (0,±1,∓1)

(4.2) Some data for regular ternary forms
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