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1 Preliminaries

In [1], Louboutin obtained a lower bound for class numbers of pure cubic
number fields and applied this bound to classify all pure cubic fields of the
form Q(v/m? £ 1) whose class numbers are smaller than three. In this paper,
using Louboutin’s bound we classify all pure cubic fields of Rudman- Stender
type of class number one.

Definition 1.1 Let d = m® + r, where d,m,r € Z, with d,m > 0,|r| > 1
and d cube-free. If r|3m? then the field k = Q(v/d) is called a pure cubic field
of Rudman- Stender type.

Rudman and Stender proved

Theorem 1.2 Let k = Q(v/m? +r) be a pure cubic field of Rudman- Sten-
der type. Let n be the fundamental unit of k and € = r/(w — m)3, where

w=v'm3+r. Then
€=1,

with the following exceptions:
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e: { n*if (mr)=(2,-6), (1,3), (2.2), (3,1), and (5,-25),
773 if (m,r)z(?,—4).

Proof: See [3]. O

Theorem 1.3 Let k be a pure cubic field. Then

hiRy > | 7—, dp>3-10
k k_9 logdku k Z )

where hy,dy and Ry are the class number, the absolute value of discriminant
and the requlator of k, respectively.

Proof: See [1]. 0

2 Main theorems

In this section, we obtain a lower bound for class numbers of pure cubic fields
of Rudman-Stender type. We apply this bound to determine all pure cubic
fields of Rudman- Stender type of class number one.

Theorem 2.1 Let k be a pure cubic field of Rudman-Stender type. Then

11 [y ,
hy > — dp,>3-1
"= 9log(1282) \ logd,” F T 3-10%

where hy, and dy, are the class number and the absolute value of discriminant
of k respectively.

Proof: Set d = m? +r. Let k = Q(v/d) be a pure cubic field of Rudman-
Stender type and € = r/(w —m)3. Define a and b by means of (a,b) = 1 and
d = ab®. Then dj, = 3(ab)? or dj, = 27(ab)? according as d = +1 (mod 9) or
not. Thus dj, > 3d. Since € = (w? 4+ mw +m?)?/r? and V2w > m, we easily
see that

e < 12d3.
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By Theorem 1.2 we have
Ry < loge < log(lei).

where Ry is the regulator of k. From Theorem 1.3 we get the desired lower
bound for class number of k. O

Theorem 2.2 There are exactly five pure cubic fields of Rudman-Stender
type of class number one, i.e., Q(v/2), Q(3/5), Q(+/6), Q(+/10), Q(:/12).

Proof: Set d = m® 4 r. Let k = Q(+/d) be a pure cubic field of Rudman-
Stender type. By Theorem 2.1 we have hy > 1 if d;, > 1.05-10°. Note
that if m > 72 then d;, > 1.05-10°. If d < 1000, then we find exactly
five d which hy = 1 jie., d = 2 if (m,r)=(2,-6), (1,4), or (2,-4), d = 5 if
(m,r)=(2,-3), d = 6 if (m,r)=(2,-2), d = 10 if (m,r)=(2,2) or (5,-25), d = 12
if (m,r)=(2,4) or (3,-9) from the table in [2]. Thus to prove the theorem, it
is enough to show that if d > 1000, m < 71 and d;, < 1.05-10°, then h; > 1.
Using MATHEMATICA we know that there are only 26 pairs of (m,r),
i.e., (m,r)=(10,25), (10,100), - --, (30,225), satisfying the above conditions.
For each case, computing the actual value of the regulator we have more
sharper lower bound than Theorem 2.1 and easily show that its class number
is greater than one. For example, we consider the case (m,r)=(10,25). In
this case, d = 1025, d, = 126075 and Rj ~ 10.7. Applying these values to
Theorem 1.3 we have hy > 1. The other cases can be treated similarly. This
complets the proof of the theorem. O
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