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In this paper we continue the method of our previous paper [2] and
get various class number 2 criteria for real quadratic fields of Richaud-
Degert type. In the appendix, as an application of our method, we
construct real quadratic fields of class number divisible by n, where n

is any positive integer.

1 Preliminaries

In this section we introduce the result which will be necessary in our work
without proof. Let k be a real quadratic field and ζk(s) denote the Dedekind
zeta function of k. There are two ways of computing special values of ζk(s),
due to C.L.Siegel and H.Lang. We first state Siegel’s formula.

Theorem 1.1 Let k be a real quadratic field with discriminant D. Then

ζk(−1) =
1

60

∑

|b|<
√

D

b2≡D(mod 4)

σ1(
D − b2

4
),

where σ1(r) denote the sum of divisors of r.

∗The Present Studies were supported by the Basic Science Research Institute Program,
Ministry of Education (BSRI-95-1431).
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Proof: See [6] [12]. 2

However there is another method of computing special values of ζk(s) if
k is a real quadratic field due to H. Lang.

Let k = Q(
√

d) be a real quadratic field of discriminant D and A an
ideal class of k. Let ε be the fundamental unit of k and a be any integral
ideal belonging to A−1. Let r1, r2 be an integral basis of a and r′1, r

′
2 be their

conjugates. We put
δ(a) = r1r

′
2 − r′1r2.

Since εr1, εr2 are also an integral basis of a, we can find an integral matrix

M =

[
a b
c d

]
satisfying

ε

[
r1

r2

]
= M ·

[
r1

r2

]
.

Now we can state Lang’s formula.

Theorem 1.2 By keeping the above notation, we have

ζk(−1, A) =
sgn δ(a)r2r

′
2

360N(a)c3
{(a + d)3 − 6(a + d)N(ε)

−240c3 (sgn c)S3(a, c) + 180ac3 (sgn c)S2(a, c)

−240c3 (sgn c)S3(d, c) + 180dc3 (sgn c)S2(d, c)},
where Si(a, c) = Si

4(a, c) denote the generalized Dedekind sum.

Proof: This is a main theorem of [7]. 2

To use Lang’s formula, we need to compute a, b, c, d and generalized
Dedekind sums.

Lemma 1.3 Put M =

(
a b
c d

)
. Then

a = tr (
r1r

′
2ε

δ(a)
), b = tr (

r1r
′
1ε
′

δ(a)
)

c = tr (
r2r

′
2ε

δ(a)
), d = tr (

r1r
′
2ε
′

δ(a)
).

Furthermore, det M = N(ε) and bc 6= 0.
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Proof: See [6]. 2

Applying reciprocity law for generalized Dedekind sums (see, for example,
[1, 3]), we have the following results.

Lemma 1.4 Let m be a positive integer. Then we have

(i) S3(±1,m) = ±−m4 + 5m2 − 4

120m3
,

(ii) S2(±1,m) =
m4 + 10m2 − 6

180m3
.

Proof: See [6]. 2

Lemma 1.5 Let m be a positive even integer. Then we have

(i) S3(m + 1, 2m) = S1(m + 1, 2m) =
−m4 + 50m2 − 4

120(2m)3
,

(ii) S3(m− 1, 2m) = −S1(m + 1, 2m) =
m4 − 50m2 + 4

120(2m)3
,

(iii) S2(m− 1, 2m) = S2(m + 1, 2m) =
m4 + 100m2 − 6

180(2m)3
.

Proof: See [6]. 2

Lemma 1.6 Let m be a positive even integer. Then we have

(i) S3(m + 1, 4m) =
−m4 − 180m3 + 410m2 − 4

120(4m)3
,

(ii) S3(m− 1, 4m) =
m4 − 180m3 − 410m2 + 4

120(4m)3
,

(iii) S2(m− 1, 4m) = S2(m + 1, 4m) =
m4 + 820m2 − 6

180(4m)3
.

Proof: See [6]. 2
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2 Main theorem

In this section, we compare special values of zeta function and derive our
main theorem. We start from a definition.

Definition 2.1 Let d = n2 + r, d 6= 5, be a positive square free integer
satisfying the conditions

r|4n and − n < r ≤ n.

In this situation, the real quadratic field k = Q(
√

d) is called a real quadratic
field of Richaud-Degert (R-D) type.

Proposition 2.2 Let k = Q(
√

d), d > 0, be a real quadratic field of R-D
type. Then the fundamental unit ε and its norm N(ε) are given as follows :

ε = n +
√

n2 + r, N(ε) = −sgn r if |r| = 1,

ε =
n +

√
n2 + r

2
, N(ε) = −sgn r if |r| = 4,

and

ε =
2n2 + r

|r| +
2n

|r|
√

n2 + r, N(ε) = 1 if |r| 6= 1, 4.

Proof: See Degert [5]. 2

Proposition 2.3 Let k = Q(
√

d) be a real quadratic field with square-free
integer d. Then

(i) 2 splits in k if d ≡ 1 (mod 8) i.e. (2) = (2, 1+
√

d
2

)(2, 1−
√

d
2

).

(ii) 2 ramifies in k if d ≡ 2, 3 (mod 4) i.e. (2) = (2, α +
√

d)2 where α = 0
if d ≡ 2 (mod 4)and α = 1 if d ≡ 3 (mod 4).

(iii) 2 remains prime in k if d ≡ 5 (mod 8).

Proof: See [4]. 2

Let A be the ideal class of principal ideals and B the ideal class containing

(2, 1±
√

d
2

) or (2, α +
√

d) as in Proposition 2.3 i),ii).
Now we compute ζk(−1, A) and ζk(−1, B) and compare these values.

Finally we conclude that the ideal B is not principal with some exceptions.
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Theorem 2.4 Let k = Q(
√

d) be a real quadratic field of R-D type and let
A denote the ideal class of principal ideals of k. Then,

I. d = n2 + r ≡ 2, 3 (mod 4)

(i) |r| 6= 1, 4

ζk(−1, A) =
4n3(r2 + 1) + 2nr(3r2 + 5r + 3)

180r2

(ii) |r| = 1

ζk(−1, A) =
4n3 + 5n± 6n

180

II. d = n2 + r ≡ 1 (mod 4)

(i) |r| 6= 1, 4

ζk(−1, A) =
2n3(r2 + 1) + n(3r3 + 50r2 + 3r)

720r2
if n even

ζk(−1, A) =
2n3(r2 + 16) + n(3r3 + 20r2 + 48r)

720r2
if n odd

(ii) |r| = 4 (hence n odd)

ζk(−1, A) =
n3 + 5n± 6n

360
(iii) |r| = 1 (hence r = 1 and n even)

ζk(−1, A) =
n3 + 14n

360
.

Proof: This is one of main theorems of [2]. Basic idea of proof is the same
as that of Theorem 2.5 below. 2

Theorem 2.5 Let k = Q(
√

d) be a real quadratic field of R-D type and let

B be the ideal class containing (2, 1+
√

d
2

) or (2, α +
√

d) as in Proposition 2.3
i),ii). Then,

I. d = n2 + r ≡ 2, 3 (mod 4)
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(i) |r| 6= 1, 4

ζk(−1, B) =
2n3(r2 + 1) + nr(3r2 + 50r + 3)

360r2

if d ≡ 2 (mod 4) and n odd or if d ≡ 3 (mod 4) and n even.

ζk(−1, B) =
2n3(r2 + 16) + nr(3r2 + 20r + 48)

360r2

if d ≡ 2 (mod 4) and n even or if d ≡ 3 (mod 4) and n odd.

(ii) |r| = 1

ζk(−1, B) =
2n3 + 25n± 3n

360

II. d = n2 + r ≡ 1 (mod 8)

(i) |r| 6= 1, 4

ζk(−1, B) =
2n3(r2 + 1) + n(3r3 + 410r2 + 3r)

2880r2

(ii) |r| = 1 (hence r = 1 and n even)

ζk(−1, B) =
n3 + 104n

1440
.

Proof: We know that {1±
√

d
2

, 2}and{α +
√

d, 2} are integral bases for

(1±
√

d
2

, 2) and (α +
√

d, 2) in Proposition 2.3 i),ii), respectively. Hence we

can take a = [1∓
√

d
2

, 2] or [α +
√

d, 2] in Theorem 1.2.
We give detailed computation only for the case I(i) d ≡ 2 (mod 4) and n

odd, since the other cases are similar to this case.
Now assume that d = n2 + r ≡ 2 (mod 4), where n is odd and |r| 6= 1, 4.

In this case, D = 4d and r1 =
√

n2 + r, r2 = 2 form an integral basis for a.
By Proposition 2.2,

ε =
2n2 + r

|r| +
2n

|r|
√

n2 + r

is the fundamental unit of k and N(ε) = 1. By Lemma 1.3, we have

ε

[
r1

r2

]
= (

2n2 + r

|r| +
2n

|r|
√

n2 + r)

[ √
n2 + r

2

]

=




2n2+r
|r|

n(n2+r)
|r|

4n
|r|

2n2+r
|r|




[ √
n2 + r

2

]
.
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Note that

2n2 + r

|r| =
n− 1

2

4n

|r| +
2n

|r| + sgn r ≡ 2n

|r| + sgn r (mod
4n

|r| ).

Now put η = sgn r. Then, by Lemma 1.5,

240c3 sgn cS3(a, c) = 240c3S3(
2n

|r| + η,
4n

|r| ) = −8η

r4
(4n4 − 50n2r2 + r4),

180ac3 sgn cS2(a, c) = 180ac3S2(
2n

|r| + η,
4n

|r| ) =
2η

r5
(2n2 + r)(8n4 + 200n2r2 − 3r4),

and

(a + d)3 − 6(a + d)N(ε) = 8η
(2n2 + r)3

r3
− 12η

2n2 + r

r
.

By substitution these results to Theorem 1.2, we get

ζk(−1, B) =
2n3(r2 + 1) + nr(3r2 + 50r + 3)

360r2
.

2

Theorem 2.6 Let k = Q(
√

d) be a real quadratic field of R-D type and hd

be the class number of k. Then,

I. d = n2 + r ≡ 2, 3 (mod 4)

(i) |r| 6= 1, 4

hd > 1 except r = ±2

(ii) |r| = 1

hd > 1 except d = 2, 3

II. d = n2 + r ≡ 1 (mod 8)

(i) |r| 6= 1, 4

hd > 1 except d = 33

(ii) |r| = 1 (hence r = 1 and n even)

hd > 1 except d = 17.
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Proof: Basic idea is as follows. We compare ζk(−1, A) in Theorem 2.4 and
ζk(−1, B) in Theorem 2.5. We have hd > 1 if ζk(−1, A) 6= ζk(−1, B). We
give detailed computation only for the case II (ii), since the other cases are
similar to this case.

Now assume that d = n2 + 1 ≡ 1 (mod 8). Then by Theorem 2.4

ζk(−1, A) =
n3 + 14n

360
,

and by Theorem 2.5

ζk(−1, B) =
n3 + 104n

1440
.

If n3+14n
360

= n3+104n
1440

then 3n(n2− 16) = 0. Thus d = 17. Hence hd > 1 except
d = 17. 2

Combining Theorem 1.1, Theorem 2.4,Theorem 2.5 and Theorem 2.6 we
obtain

Theorem 2.7 Let k = Q(
√

d) be a real quadratic field of R-D type and D be
the discriminant of k. Then, for each case, the following equality is equivalent
to the condition that hd = 2.

I. d = n2 + r ≡ 2, 3 (mod 4)

(i) |r| 6= 1, 4 except r = ±2

1

60

∑

|b|<
√

D

b2≡D(4)

σ1(
D − b2

4
) =

2n3(r2 + 1) + n(3r3 + 14r2 + 3r)

72r2

if d ≡ 2 (mod 4) and n odd or if n ≡ 3 (mod 4) and n even,

1

60

∑

|b|<
√

D

b2≡D(4)

σ1(
D − b2

4
) =

2n3(r2 + 4) + n(3r3 + 8r2 + 12r)

72r2

if d ≡ 2 (mod 4) and n even or if n ≡ 3 (mod 4) and n odd.

(ii) |r| = 1 except d = 2, 3

1

60

∑

|b|<√D

b2≡D(4)

σ1(
D − b2

4
) =

10n3 + 35n± 15n

360
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II. d = n2 + r ≡ 1 (mod 8)

(i) |r| 6= 1, 4 except d = 33

1

60

∑

|b|<
√

D

b2≡D(4)

σ1(
D − b2

4
) =

2n3(r2 + 1) + n(3r3 + 122r2 + 3r)

576r2

if n even

1

60

∑

|b|<√D

b2≡D(4)

σ1(
D − b2

4
) =

2n3(r2 + 13) + n(3r3 + 98r2 + 39r)

576r2

if n odd

(ii) |r| = 1 (hence r = 1 and n even) except d = 17

1

60

∑

|b|<
√

D

b2≡D(4)

σ1(
D − b2

4
) =

n3 + 32n

288

Proof: Let A and B be the ideal class in Theorem 2.4 and Theorem 2.5
respectively. By Theorem 2.6, B is not equal to A in each case. Hence

ζk(−1) = ζk(−1, A) + ζk(−1, B)

if and only if hd = 2. By Theorem 1.1, 2.4, 2.5 and easy computation we
have the result. 2

3 Class number 2 criteria for real quadratic

fields of Richaud-Degert type

In this section we shall apply Theorem 2.7 to obtain class number 2 criteria
for some real quadratic fields of R-D type. Recall that k = Q(

√
d) is a real

quadratic field of R-D type if d( 6= 5) is a square free integer of the form n2+r
such that r|4n, −n < r ≤ n. We devide the situation into two cases.

Case I. d = n2 + r ≡ 2, 3 (mod 4)
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Corollary 3.1 Let k = Q(
√

d), d = 4n2 − 1, n > 1. Then

hd = 2 ⇔ 2n2 − 2t2 − 2t− 1 (0 ≤ t ≤ n) are primes.

Corollary 3.2 Let k = Q(
√

d), d = (2n + 1)2 + 1, n > 1. Then

hd = 2 ⇔ 2n2 + 2n + 1− 2t2 (0 ≤ t ≤ n) are primes.

Corollary 3.3 Let k = Q(
√

d), d = (2n+1)2 + r, r ≡ 1(4), r|2n+1, r > 1.
Write 2n + 1 = rm. Then

hd = 2 ⇔ r, rm± r − 1

2
,
rm2 + 1

2
,

r2m2 + r − t2 (1 ≤ t ≤ rm, 2 /|t, r /|t, and t 6= r + 1

2
),

r2m2 + r − 4s2

2
(1 ≤ s ≤ rm− 1

2
, r /|s),

rm2 + 1− ru2 (1 ≤ u ≤ m− 1, 2 /|u),

rm2 + 1− 4rv2

2
(1 ≤ v ≤ m− 1

2
) are primes.

Corollary 3.4 Let k = Q(
√

d), d = (2n+1)2− r, r ≡ 1(4), r|2n+1, r > 1.
Write 2n + 1 = rm. Then

hd = 2 ⇔ r, rm± r + 1

2
,
rm2 − 1

2
,

r2m2 − r − t2 (1 ≤ t ≤ rm− 1, 2 /|t, r /|t, and t 6= r − 1

2
),

r2m2 − r − 4s2

2
(1 ≤ s ≤ rm− 1

2
, r /|s),

rm2 − 1− ru2 (1 ≤ u ≤ m− 1, 2 /|u),

rm2 + 1− 4rv2

2
(1 ≤ v ≤ m− 1

2
) are primes

Corollary 3.5 Let k = Q(
√

d), d = (2n + 1)2 + 2r, r ≡ 1, 3(4), r|2n + 1,
r > 1. Write 2n + 1 = rm. Then

hd = 2 ⇔ r, rm2 + 2,
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r2m2 − 2r − t2 (1 ≤ t ≤ rm, 2 /|t + 1, r /|t),
r2m2 + 2r − (2s− 1)2

2
(1 ≤ s ≤ rm + 1

2
, r /|2s− 1),

rm2 − 2− ru2 (1 ≤ u ≤ m− 1, 2 /|u + 1),

rm2 + 2− r(2v − 1)2

2
(1 ≤ v ≤ m− 1

2
) are primes

Corollary 3.6 Let k = Q(
√

d), d = (2n + 1)2 − 2r, r ≡ 1, 3(4), r|2n + 1,
r > 1. Write 2n + 1 = rm. Then

hd = 2 ⇔ r, rm2 − 2,

r2m2 − 2r − t2 (1 ≤ t ≤ rm− 1, 2 /|t + 1, r /|t),
r2m2 − 2r − (2s− 1)2

2
(1 ≤ s ≤ rm− 1

2
, r /|2s− 1),

rm2 − 2− ru2 (1 ≤ u ≤ m− 1, 2 /|u + 1),

rm2 − 2− r(2v − 1)2

2
(1 ≤ v ≤ m− 1

2
) are primes

Corollary 3.7 Let k = Q(
√

d), d = 4n2 + r, r ≡ 3(4), r|n, r > 1. Write
n = rm. Then

hd = 2 ⇔ r, 2rm± r − 1

2
, 4rm + 1,

4r2m2 + r − t2 (1 ≤ t ≤ 2rm, 2 /|t + 1, r /|t, and t 6= r + 1

2
),

4r2m2 + r − (2s− 1)2

2
(1 ≤ s ≤ rm, r /|2s− 1),

4rm2 + 1− ru2 (1 ≤ u ≤ 2m− 1, 2 /|u + 1),

4rm2 + 1− r(2v − 1)2

2
(1 ≤ v ≤ m) are primes

Corollary 3.8 Let k = Q(
√

d), d = 4n2 − r, r ≡ 1(4), r|n, r > 1. Write
n = rm. Then

hd = 2 ⇔ r, 2rm± r + 1

2
, 4rm− 1,

4r2m2 − r − t2 (1 ≤ t ≤ 2rm− 1, 2 /|t + 1, r /|t, and t 6= r − 1

2
),
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4r2m2 − r − (2s− 1)2

2
(1 ≤ s ≤ rm, r /|2s− 1),

4rm2 − 1− ru2 (1 ≤ u ≤ 2m− 1, 2 /|u + 1),

4rm2 − 1− r(2v − 1)2

2
(1 ≤ v ≤ m) are primes

Corollary 3.9 Let k = Q(
√

d), d = 4n2 + 2r, r ≡ 1, 3(4), r|n, r > 1. Write
n = rm. Then

hd = 2 ⇔ r, 2rm2 + 1,

4r2m2 + 2r − t2 (1 ≤ t ≤ 2rm, 2 /|t, r /|t),
2r2m2 + r − 2s2 (1 ≤ s ≤ rm, r 6= s),

4rm2 + 2− ru2 (1 ≤ u ≤ 2m, 2 /|u),

2rm2 + 1− 2rv2 (1 ≤ v ≤ m) are primes

Corollary 3.10 Let k = Q(
√

d), d = 4n2 − 2r, r ≡ 1, 3(4), r|n, r > 1.
Write n = rm. Then

hd = 2 ⇔ r, 2rm2 − 1,

4r2m2 − 2r − t2 (1 ≤ t ≤ 2rm− 1, 2 /|t, r /|t),
2r2m2 − r − 2s2 (1 ≤ s ≤ rm− 1, r 6= s),

4rm2 − 2− ru2 (1 ≤ u ≤ 2m− 1, 2 /|u),

2rm2 − 1− 2rv2 (1 ≤ v ≤ m− 1) are primes

Case II. d = n2 + r ≡ 1 (mod 8)

Corollary 3.11 Let k = Q(
√

d), d = 4n2 + 1. Then

hd = 2 ⇔ d = 65.

Corollary 3.12 Let k = Q(
√

d), d = n2 + r, r 6= 1. Then

hd = 2 ⇔ d = 105.
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We give the proof of Corollary 3.3, the other cases can be done similarly.
Proof of Corollary 3.3: We have D = 4d. By Siegel’s computation,

ζk(−1) =
1

60

∑

|b|<
√

D

b2≡D(mod 4)

1

60
σ1(

D − b2

4
)

=
1

60

{
2

rm∑

t=1

σ1(r
2m2 + r − t2) + σ1(r

2m2 + r)

}
.

Since r2m2+r−t2 = r(rm2+1)−t2 and r,m are odd integers, r2m2+r−t2

has the following trivial divisors in each case:

t = 2s, 1 ≤ s ≤ rm− 1

2
and r /|s ; 1, r2m2 + r − t2, 2,

r2m2 + r − 4s2

2
t = ru, 1 ≤ u ≤ m− 1 and 2 /|u ; 1, r2m2 + r − t2, r, rm2 + 1− ru2

t = 2rv, 1 ≤ v ≤ m− 1

2
; 1, r2m2 + r − t2, 2,

r2m2 + r − 4r2v2

2
,

r, rm2 + 1− 4rv2, 2r,
rm2 + 1− 4rv2

2

t =
r + 1

2
; 1, r2m2 + r − t2, rm− r − 1

2
, rm +

r − 1

2
.

Similary r2m2 + r = r(rm2 + 1) has the following trivial divisors;

1, r2m2 + r, 2, r2m2+r
2

, r, rm2 + 1, 2r, rm2+1
2

.

Hence we have

ζk(−1) ≥ 1

30

rm∑

t=1

(1 + r2m2 + r − t2)

+
1

30

rm−1
2∑

s=1

(2 +
r2m2 + r − 4s2

2
)

+
1

30

m−1∑

u=1

(r + rm2 + 1− ru2)
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+
1

30

m−1
2∑

v=1

(2r +
rm2 + 1− 4rv2

2
)

+
1

30
(rm− r − 1

2
+ rm +

r − 1

2
)

+
1

60
(1 + r + rm2 + 1 + 2 +

r2m2 + r

2
+ 2r +

rm2 + 1

2
+ r2m2 + r)

=
10r3m3 + 10rm3 + 15r2m + 70rm + 15m

360
= ζk(−1, A) + ζk(−1, B).

Note that equality holds if and only if r, rm± r−1
2

, rm2+1
2

, r2m2+r−t2 (1 ≤
t ≤ rm, 2 /|t, r /|t, and t 6= r+1

2
), r2m2+r−4s2

2
(1 ≤ s ≤ rm−1

2
, r /|s), rm2 + 1 −

ru2 (1 ≤ u ≤ m− 1, 2 /|u), rm2+1−4rv2

2
(1 ≤ v ≤ m−1

2
) are primes.

2

Remark 1. In [9], R. A. Mollin obtained results similar to the above
corollaries in different ways. He used theory of continued fractions and alge-
braic arguements to obtain his results.

Remark 2. There is an interesting result concerning the number of real
quadratic fields of Richaud-Degert type of class number two. Let d be a
square-free rational integer of the form d = n2 + 4 or n2 + 1 where n is a
natural number. In [8], M. G. Leu showed that there are exactly 16 values
of d, namely

d = 10, 26, 65, 85, 122, 362, 365, 485, 533, 629, 965, 1157, 1685, 1853, 2117, 2813,

such that k = Q(
√

d) has class number two with one more possible exception,
and under the assumption of the generalized Riemman Hypothesis this is true
without any exception.

4 Appendix. Construction of real quadratic

fields of class number divisible by n

In this appendix, as an application of our method, we construct real quadratic
fields whose class number is divisible by n, where n is any positive integer.
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Let d = (2pn)2 +1 be a square free integer where p and n are any positive
rational integer, and k = Q(

√
d) a real quadratic field. Then we have,

Theorem 4.1 Let k = Q(
√

(2pn)2 + 1) be a real quadratic field and C the
ideal class of principal ideals. Then

ζk(−1, C) =
2p3n + 7pn

90
.

Proof: We can take a = Ok = [r1, r2] where r1 =
1+
√

(2pn)2+1

2
and r2 = 1

in Theorem 1.2. By Proposition 2.2,

ε = 2pn +
√

(2pn)2 + 1

is the fundamental unit of k and N(ε) = −1. By Lemma 1.3, we have

ε

[
r1

r2

]
= (2pn +

√
(2pn)2 + 1)




1+
√

(2pn)2+1

2

1




=

[
2pn + 1 2p2n

2 2pn − 1

] 


1+
√

(2pn)2+1

2

1


 .

By lemma 1.4,

240c3 sgn cS3(a, c) = 240c3S3(1, c) = 0,

240c3 sgn cS3(d, c) = 240c3S3(−1, c) = 0,

180ac3 sgn cS2(a, c) = 180ac3S2(1, c) = 50(2pn + 1),

180dc3 sgn cS2(d, c) = 180ac3S2(−1, c) = 50(2pn − 1),

and
(a + d)3 − 6(a + d)N(ε) = (4pn)3 + 6(4pn).

By substitution these results to Theorem 1.2, we get

ζk(−1, C) =
2p3n + 7pn

90
.
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2

We know that the rational integer p factors in k such that

(p) = (
1 +

√
(2pn)2 + 1

2
, p)(

1−
√

(2pn)2 + 1

2
, p).

And we easily see that for rational integer 1 ≤ r ≤ n,

(
1±

√
(2pn)2 + 1

2
, p)r = (

1±
√

(2pn)2 + 1

2
, pr).

In fact, {1±
√

(2pn)2+1

2
, pr} is an integral basis for (

1±
√

(2pn)2+1

2
, pr)(See [4]).

Lemma 4.2 The integral ideal (
1±
√

(2pn)2+1

2
, pn) is principal.

Proof: We will prove that

(
1±

√
(2pn)2 + 1

2
, pn) = (

1±
√

(2pn)2 + 1

2
+ pn).

To do this, it is enough to show that

pn ∈ (
1±

√
(2pn)2 + 1

2
+ pn).

But this is clear since

(
1±

√
(2pn)2 + 1

2
+ pn)(

1∓
√

(2pn)2 + 1

2
+ pn) = pn.

2

Theorem 4.3 Let Ar be the ideal class of (
1+
√

(2pn)2+1

2
, pr) ,for rational in-

teger 1 ≤ r ≤ n. Then

ζk(−1, Ar) =
2p3n−2r + 2p2r+n + 5pn

90
.

In particular, if r = n, then ζk(−1, An) = ζk(−1, C).
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Proof: We can take ar = [r1, r2] where r1 =
1−
√

(2pn)2+1

2
and r2 = pr. Then

the result follows from the same way as in Theorem 4.1. 2

From Theorem 4.3 we have the following corollary.

Corollary 4.4 The class number of the real quadratic Q(
√

(2pn)2 + 1) is
divisible by n.

Proof: By Lemma 4.2, we only show that if the rational positive integer
r 6= n, then

ζk(−1, Ar) 6= ζk(−1, C).

But it is easy. So we have the result. 2

Remark. The result of Corollary 4.4 is classical and well-known. For
example, Y. Yamamoto [10] and P. J. Weinbger [11] obtained the same result
in different manners.
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