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In this note, we extend the Uchida-Washington construction ([3]
[4]) of the simplest cubic fields with class numbers divisible by a given
rational integer, to the wildly ramified case, which was previously
excluded.

The simplest cubic field is the field defined by the irreducible polynomial
over the rational number field Q of the following form

flz) =2+ ma* — (m+3)x + 1,

where m is a rational integer. Under the assumption that 3 f m, Uchida [3]
and Washington [4] have constructed simplest cubic fields with class numbers
divisible by n, where n is any given rational integer. In this note, we show
that Uchida-Washington method also works in the case 3|m.

Let m be a rational integer such that m = 3, 21 mod 27, m > 3 and K
be the cubic field defined by the polynomial

f(z) =2 +ma* — (m+3)x + 1.
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The discriminant of f(z) is (m*+3m~+9)%. We can write m?+3m+9 = 27bc?,
where 3 } bc and b is cube free. It is easily seen that the prime factors of the
discriminant of K are those of b and 3 (See [4]).

Lemma. Let b=p{'---pf, a; € {1,2}. Thent > 1.
Proof: Suppose that ¢t = 0 so that m? + 3m + 9 = 27¢*. We have
(m+ 6)° — (m — 3)° = (96)°,
which is impossible for m > 3. a

Let p, o, p” be the zeros of f(x), E the full group of units of K, and F’
the subgroup of E generated by p, o/, p”, as in [4]. First we have

Proposition 1. The prime ideal divisor of 3 in K cannot be a principal
1deal.

Proof: Let p, p; denote the prime divisor of 3 and p; in the Lemma respec-
tively. From Hasse’s Klassenkorperbericht, Ta, §13 [1], we have:

Every ambiguous class contains an ambiguous ideal and the num-
ber of ambiguous classes of K is 3¢

Put 6 = (p — p')/(3¢). Then

(6) = s - b
Since the classes of the ambiguous ideals p, p1---, pt generate a group of
order 3%, there is a unique relation between them. Therefore, p cannot be a
principal ideal.

The proof of the fact quoted from Hasse’s book is somewhat intricate,
so it is of interest to give a direct proof. Suppose first that the unit index
|[E : E'] is divisible by 3. Then one of the units p, p — 1, p(p — 1), p*(p — 1)
is a cube. Consider, for example, the possibility p(p — 1) = &3. Write
Irr(¢, Q) = 23 — s2? + to — n. An easy computation gives

Irr(&3,Q) = 2° — (s° — 3st + 3n)a® + (t* — 3stn + 3n®)x — n°.



In the present case,
Irr(p(p —1),Q) = 2* — (m* + 3m + 6)2° + 3z + 1.
Comparing coefficients, we obtain n = —1 and
m?>+3m+6=s>—3st—3, 3=t>+3st+3.

As in the Lemma, it is easy to see that this pair of diophantine equations
does not have solutions for m > 3. The other cases are dealt with similarly.

Thus we have 3 [ [E : E'].
Suppose now that p is a principal ideal. Then

3pa(p1)b — 63-
Taking cojugates, manipulating slightly and changing notations, we are led
to equations
3"p(p—1) = ¢*, where v € {1,2},

which are shown to be impossible by a similar argument. Thus we have the
desired result. O

Now we have

Proposition 2. Let a and n be positive integers with a > 1 and (a,6) = 1.
Let m be an integer such that m = 3,21 mod 27, m > 3 and 2m+3 = 9a™. Let
K be the cubic field defined by the polynomial f(z) = 2*+max?— (m+3)z+1
and 3 = (=1 — p)3/9, where p is a zero of the polynomial f(z). Then we
have

(i) (B) is the 3n-th power of an ideal of K.
(i1) (B) is not a third power of a principal ideal of K.

(1i) If 2|n and there is a prime factor p of a such that at least one of the
numbers 2,3 is a quadratic nonresidue mod p, then ((3) is not a square
of a principal ideal of K.

(iv) Let 1 be a prime factor of n and l > 3. If there are prime factors p, q
of a such that 2 is an [-th power nonresidue mod p, 3 is an l-th power
residue mod p, 3 is an l-th power nonresidue mod q, then [ is not an
[-th power of a principal ideal of K.
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In particular, a has prime factors as in (iii)(iv) for each prime l dividing
n, then the class number of K is a multiple of 3n.

Proof: (i) We modify the equation in [4, Proposition 2] into 9a" = f(x)
and take z = —1. Then Washington’s proof works, and we get:

Let p be a prime ideal of K and p f 3. If p* is the exact power
of p dividing —1 — p then u is divisible by n.

Thus we easily see that (8) = (=1 — p)3/9 is a 3n-th power of an ideal of K.

(ii) Suppose that (3) is the third power of a principal ideal. Then the
same is true for (3), i.e., (3) = p3, where the prime ideal p is principal. But
this is impossible from Proposition 1.

(iii) (iv) We get these immediately by a slight modification of Washing-
ton’s method.

Suppose that a has prime factors as in (iii)(iv) for the prime factors [ of
3n. If the order of (/) is smaller than 3n, then for a prime factor [ of 3n, ()
is the [-th power of a principal ideal of K. But this contradicts the above
(i) (iii) (iv). Thus we have completed the proof. O

Remark. In [2], Orvay discussed the family of cubic fields K = Q(6), where
Irr(0, Q) = 2 — px + pq, p = (9 + 27¢%) /4, 4i2,3 [ ¢, and p/9 is squarefree.
Put 1/p = (1 —3¢)/2+ 6. Then

Irr(1/p, Q) = 2® + ma® — (m +3)z + 1,

where m = (9¢ — 3)/2. Therefore, the family investigated by Orvay, in
fact, is the subfamily of simplest cubic fields discussed in this note, where
m = 3,21 mod 27, m > 12, and (m?*+3m+9)/27 is squarefree. mposing some
conditions on ¢, Orvay has constructed ubic fields with even class numbers.
So this note is also an extension of Orvay’s work.
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