Quadratic twists of elliptic curves associated to the simplest cubic fields

Dongho Byeon *
Department of Mathematics
Pohang University of Science and Technology
San 31 Hyoja Dong, Pohang, 790–784, KOREA

1 Introduction

Let m be a rational integer such that $m^2 + 3m + 9$ is square-free. Let K be the cubic field defined by the irreducible polynomial over the rational number field \mathbb{Q}

$$f(x) = x^3 + mx^2 - (m+3)x + 1.$$

We call K a simplest cubic field.

In [2], Washington has studied the elliptic curve E defined over $\mathbb Q$ by

$$E: y^2 = x^3 + mx^2 - (m+3)x + 1,$$

and has shown that the 2-rank of ideal class group of K is greater than the rank of the group of rational points of E.

In this paper, we consider quadratic twists of the elliptic curve E and applying Washington's idea to our twists, show that the 2-rank of ideal class group of K is also greater than the ranks of the groups of rational points of some infinitely many quadratic twists of the elliptic curve E.

^{*}This research is supported by POSTECH/BSRI special fund.

2 Main Theorem

Let $a \neq 0$ be a rational integer and E_a be the quadratic twist of E defined by

$$E_a: ay^2 = x^3 + mx^2 - (m+3)x + 1.$$

Multiply each side of E_a by a^3 and replace a^2y , ax by y, x respectively. Then we have

$$E_a: y^2 = x^3 + max^2 - (m+3)a^2x + a^3.$$

The discriminant of E_a is $16a^6(m^2 + 3m + 9)$ and the *J*-invariant of E_a is $256(m^2 + 3m + 9)$.

Let $f_a(x) = x^3 + max^2 - (m+3)a^2x + a^3$. Then the cubic field defined by the irreducible polynomial $f_a(x)$ is also K because

$$f_a(x) = (x - a\rho)(x - a\rho')(x - a\rho''),$$

where ρ is the negative root of f(x) and $\rho' = 1/(1-\rho)$ and $\rho'' = 1-1/\rho$ are the other two roots of f(x). Thus the 2-torsion points on E_a are the points $(a\rho, 0), (a\rho', 0), (a\rho'', 0)$, none of which is rational.

For each rational prime $p \leq \infty$, let \mathbb{Q}_p denote the completion of \mathbb{Q} at p and $E_a(\mathbb{Q}_p)$ be the group of \mathbb{Q}_p -points of E_a . If p does not split in the cubic field K, let K_p denote the completion of K at the prime above p and define the homomorphism

$$\lambda_p: E_a(\mathbb{Q}_p) \longrightarrow K_p^{\times}/(K_p^{\times})^2, \quad (x,y) \longrightarrow x - a\rho.$$

If p splits, let

$$\lambda_p: E_a(\mathbb{Q}_p) \longrightarrow (\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2)^3,$$

$$(x,y) \longrightarrow (x-a\rho, x-a\rho', x-a\rho''), \quad x \neq a\rho, a\rho', a\rho'',$$

$$(a\rho, 0) \longrightarrow (z, a(\rho-\rho'), a(\rho-\rho'')),$$

where z is chosen so that $za^2(\rho - \rho')(\rho - \rho'') \in (K^{\times})^2$. One defines $\lambda_p(a\rho', 0)$ and $\lambda_p(a\rho'', 0)$ similarly. Let $S_2(E_a)$, the Selmer group, be the subgroup of elements of $K^{\times}/(K^{\times})^2$ which are in the image of λ_p for all p. The Tate-Shafarevich group $III_2(E_a)$ is defined by the exactness of the sequence

$$0 \to E_a(\mathbb{Q})/2E_a(\mathbb{Q}) \to S_2(E_a) \to III_2(E_a) \to 0.$$

Then we have the following theorem:

Theorem. Let $a \neq 0$ be a rational integer and assume that a has no prime divisor which splits in K. Let $E_a(\mathbb{Q})$ be the group of rational points of E_a and $rankE_a(\mathbb{Q})$ denote the rank of $E_a(\mathbb{Q})$ over \mathbb{Z} . Let $C_2(K)$ be the 2-part of ideal class group of K, and $rk_2(C_2(K))$ denote the 2-rank (i.e, the dimension as a $\mathbb{Z}/2\mathbb{Z}$ -vector space) of $C_2(K)$. Then we have

$$rank E_a(\mathbb{Q}) \leq rk_2(C_2(K)) + 1.$$

Proof: First we define the map $S_2(E_a) \to C_2(K)$. Let $\alpha \in K^{\times}$ represent an element of $S_2(E_a)$, so $\alpha \in Im\lambda_p$ for all p. If p does not split in K, then $\alpha = (x - a\rho)\beta^2$ for some $\beta \in K_p^{\times}$ and $(x, y) \in E_a(\mathbb{Q}_p)$. Let ν be the valuation at the prime above p in K_p . Then since $\nu(x - a\rho) = \nu(x - a\rho') = \nu(x - a\rho'')$ and $\nu(x - a\rho)\nu(x - a\rho')\nu(x - a\rho'') = \nu(y^2)$, $\nu(\alpha)$ is even. Now suppose p splits in K. Let α' , α'' denote the conjugates of α over \mathbb{Q} . Then we have

$$(\alpha, \alpha', \alpha'') = ((x - a\rho)\beta_1^2, (x - a\rho')\beta_2^2, (x - a\rho'')\beta_3^2)$$

for some $\beta_i \in \mathbb{Q}_p$ and $(x,y) \in E_a(\mathbb{Q}_p)$. Let ν be the p-adic valuation in \mathbb{Q}_p . If $\nu(x-a\rho)$ and $\nu(x-a\rho')$ or $\nu(x-a\rho'')$ are positive, then so is $\nu(a(\rho-\rho'))$ or $\nu(a(\rho-\rho''))$, hence p divides $a^3(m^2+3m+9)$. Since a has no prime divisor which splits in K, p can not divide a. So p should divide (m^2+3m+9) . But since m^2+3m+9 is assumed to be square-free, p should ramify in K by [2. Proposition 1]. Thus we have a contradiction. If only $\nu(x-a\rho)$ is positive, it must be even. If $\nu(x-a\rho)$ is negative, then $\nu(x-a\rho)=\nu(x-a\rho')=\nu(x-a\rho'')$ and they are even. Therefore, α must have even valuation at all primes in K, so the ideal (α) is the square of an ideal of K: $(\alpha)=I^2$. So we can define the map $S_2(E_a) \to C_2(K)$ by $\alpha \to I$.

Now we consider the kernel of the map. We compute it in detail only for the case that a is negative because it can be computed similarly for the case that a is positive. If I is principal, then $\alpha = \epsilon \beta^2$ for some $\beta \in K^{\times}$ and some unit ϵ . Since $x - a\rho < x - a\rho' < x - a\rho''$ and the product is $y^2 \geq 0$, the signs of α , α' , α'' should be +, +, + or -, -, +. Therefore, for signs of ϵ , ϵ' , ϵ'' , there are the two possibilities. Since ρ , ρ' , ρ'' have signs -, +, +, we find that either ϵ or $-\rho'\epsilon$ is totally positive, hence square by [2]. Therefore, if I is principal, either α or $-\rho'\alpha$ is a square, so the kernel of the map is

contained in $\{1, -\rho'\}(K^{\times})^2/(K^{\times})^2$. Similarly, for the case that a is positive, the kernel of the map is contained in $\{1, -\rho\}(K^{\times})^2/(K^{\times})^2$.

Surjectivity of the map is also derived from the slight modification of Washington's argument in the proof of [2. Theorem 1]. Thus we have

$$rk_2(S_2(E_a)) = rk_2(C_2(K)) + 1$$
 or $rk_2(C_2(K))$

and from the exact sequence

$$0 \to E_a(\mathbb{Q})/2E_a(\mathbb{Q}) \to S_2(E_a) \to III_2(E_a) \to 0$$

we have

$$rank E_a(\mathbb{Q}) \le rk_2(S_2(E_a)).$$

Finally we have

$$rankE_a(\mathbb{Q}) \le rk_2(C_2(K)) + 1.$$

Thus we have proved the theorem completely.

Remark 1. The assumption that the rational integer a has no prime divisor which splits in K is essential for our proof. For example, let q be a rational prime which splits in K and $\alpha \in K^{\times}$ represent an element of $S_2(E_q)$. In this case, α need not have even valuation at all prime divisors in K above q. Let α' , α'' denote the conjugates of α over \mathbb{Q} . Then we have

$$(\alpha, \alpha', \alpha'') = ((x - q\rho)\beta_1^2, (x - q\rho')\beta_2^2, (x - q\rho'')\beta_3^2)$$

for some $\beta_i \in \mathbb{Q}_q$ and $(x,y) \in E_q(\mathbb{Q}_q)$. Let ν be the q-adic valuation of \mathbb{Q}_q . If one of $\nu(x-q\rho)$, $\nu(x-q\rho')$, $\nu(x-q\rho')$ is positive, then so are all of them and $\nu(x) > 0$. If $\nu(x) \geq 2$ then $\nu(x-q\rho) = \nu(x-q\rho') = \nu(x-q\rho'') = 1$. But $\nu(x-q\rho)\nu(x-q\rho')\nu(x-q\rho'') = \nu(y^2)$ is even. So we have a contradiction. Thus $\nu(x) = 1$ and let x = qb, where $b \in \mathbb{Q}_q$ and $\nu(b) = 0$. If two of $\nu(b-\rho)$, $\nu(b-\rho')$, $\nu(b-\rho'')$ are positive, then so is $\nu(\rho-\rho')$, $\nu(\rho-\rho'')$ or $\nu(\rho'-\rho'')$, hence q divides (m^2+3m+9) . Since m^2+3m+9 is assumed to be square-free, q should ramify in K by [2. Proposition 1]. So we also have a contradiction. Thus only one of $\nu(b-\rho)$, $\nu(b-\rho')$, $\nu(b-\rho'')$ is positive and it must be odd. Therefore only one of $\nu(x-q\rho)$, $\nu(x-q\rho')$, $\nu(x-q\rho'')$ is even and the others are one. This means that for some prime divisor in K above q, α has odd valuation. Thus we cannot define the map $S_2(E_q) \to C_2(K)$.

Remark 2. In [1], Kawachi and Nakano have obtained an extension of Washington's result in [2] to some other kinds of cubic polynomials and using the twist E_{-1} in the notation in this paper, have improved the result of Washington.

Aknowledgement. The author would like to thank the refree for many valuable remarks.

References

- [1] M. Kawachi and S. Nakano, The 2-class groups of cubic fields and 2-descents on elliptic curves, Tohoku Math. J. 44 (1992), 557–565.
- [2] L. C. Washington, Class numbers of the simplest cubic fields, Math. Computation. 48, No. 177 (1987), 371–384.