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1 Preliminaries

In [2], Halbritter and Pohst computed the values of partial zeta functions
of totally real cubic fields. In this paper, applying their results to the sim-
plest cubic fields, we explicitly compute some special values of partial zeta-
functions of these fields. And as applications, we give a necessary condition
for class numbers of the simplest cubic fields to be 1 and construct the sim-
plest cubic fields with class numbers divisible by a given rational integer
n.

First we restate the main theorem of [2]. (The meaning of notations such
as ( 0 , B(3,my,ma,6 — (mq +ma), (E,B,)*,0) will be explained in

my, M2

Remarks 1, 2 after the statement of the theorem.)

Theorem 1.1 (Halbritter and Pohst) Let K be a totally real cyclic cubic
field with discriminant A. For a € K the conjugates are denoted by o and
o, respectively. Furthermore, for a € K, let Tr(a) == a+ o + o” and
N(a) :=ad'a”. Let {e1, €2} be a system of fundamental units of K. Define
L by L :=In|e; /€] |In|e,/ey| — In|€| /€ |In|ea/€5]. Let W be an integral ideal of
K with basis {wy,ws,ws}.
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Let p = w3 for a dual basis wy, Wy, ws of W subject to

TT(wid)j) = 5ij (]_ S ’i,j, S 3)
For 3 =1,2, set
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Form, me K, v=1,2, set
M(2,v,1,13) =0
if det £, = 0, otherwise
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where (E,B,)* denotes the transposed matriz of (E,B,), and

47T6 : v+1
C<27V7T177—2): = _781gn([’)(_1)

N(p)?B4(0)|det B,| 'sign(detE, )

{sign((nm — 77) (1 — 7)) +sign((nm, — 7' (71 — 7))
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+ sign((r —ﬁﬁﬂﬁ—ﬁﬁ+$@“ﬂ@—ﬁﬂé—ﬁ»
+ S%HKT( )1y — 73)) +sign((ri(m — 1) (r2 — 73))
+ N( 2)[Slgn((71 (12 = 73) (172 — 773))
+ sign((m (7'2 =) (T = TTY))
+ sign((r(r — ) (71 — 1im2))]}-
Define
C2,W,m,m9): = M(2,1,7,7) + M(2,2,72,7)

+ O<2, ]_,7'1,7'2) + 0(2, 2,7'2,7'1).

Let ((s, Ko) be the partial zeta function of an absolute ideal class Ky of
K and W € K;*. Then we have

((2,K,) = ;Norm(W)2C(2, W, e, €).

Remark 1. For k,l,m € Z,

k .

l,m ::m, lfk,l,m,k—(l+m)ENU{0}7
[; ;ﬂ—ww«lim>,ﬁhmeNUmL

K =0, otherwise.

L,m

Remark 2. Let A = (a;;j)n, be a regular (n,n)-matrix with integral coeffi-
cients, (Aij)nn := (detA)A™. Let

~ | Bi(x—1z]) r=00rr>20orr=1Nz¢Z
'&@%_{o r=1Az €’ ’

where B,(y) is defined as usual by ze¥*(e* — 1)7! = 3% _B,(y)z"/r!. Then
forr = (ry,---,m,) € (NU{0})",

|detA|—1 |detA|—1 n

B(n,r, A.0) = Z Z HBTZthZAUn]

rk1=0 kn=0 1i=1



2 Special values of zeta functions of the sim-
plest cubic fields.

Let K be the simplest cubic fields defined by the irreducible polynomial over

Q
f(z) = 2* + ma* — (m +3)z + 1,

where m is a rational integer such that m? + 3m + 9 is square-free. Then the
conductor of K is D = W. Let a be the negative root of f(x) and
o =1/(1 —a), a” =1—1/a be its conjugates. Then {1, a, a?} is a basis
of K and {a,a'} is a system of fundamental units of K. (cf. [5]). Now we

have the following lemmas.

Lemma 2.1 Let q be a factor of 2m + 3. Then (q) is factorized in K with
the following form,

(¢) = (g, a4+ 1)(q,a = 2)(q,a + m + 1).

Moreover, if ¢ =2m + 3 then (¢,a+1) = (o +1), (¢, —2) = (a — 2) and
(¢,a+m+1) = (a+m+1) are principal.

Lemma 2.2 Let (¢, + 1) be the ideal of K in Lemma 2.1. Then
(a+1)=[ga+1,0" +al.

From Theorem 1.1, Lemma 2.1 and Lemma 2.2, we have the following
theorem.

Theorem 2.3 Let A be the ideal class of K which contains the ideal (q, a+1)
in Lemma 2.1. Then
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183 29 103¢*> 119

+ (56047 T 502 T 5040 T 240"
9 3 112 7T
* <_70q4 o2 Te30 T E)}'

In particular, if ¢ = 1 or 2m + 3, i.e, A~! is the principal ideal class P
of K, then

o o1 1 11 13
2P = —{ b4 dh e oot 53
Ck(2,P) Dstoss™ T 105" T1s™ T g3™
LM, 202 +8}
—m —m —r.
045 315" 9

Remark 3. Let W = (¢,a+1). To prove Theorem 2.3, we need to compute
C(2,W, v, ) in Theorem 1.1. But this computation is very long and elemen-
tary. So we omit the proof. However we can check our values by comparing
them with tables in [2].

3 Applications

Let hg be the class number of the simplest cubic field K. First we have the
following theorem.

Theorem 3.1 If hx =1 then 2m + 3 is prime.

Proof: Suppose that 2m+3 = gr (¢ # 1 and r # 1) is a composite integer.
It CK(27 A_l) = CK(27 P)a then

(r* = 1)((¢° — ¢*)r* + (85¢* — 190¢* + 105)7* + (210¢* — 210)) = 0.

But it is easily seen that this is impossible. Thus (x (2, A7) # (x(2, P). So
hyx > 1 and we have proved the above theorem. a

Remark 4. Though all the simplest cubic fields with class number 1 was
determined by Lettl [3], it seems interesting to note that Theorem 3.1 can
be regarded as a cubic analogue of the following result on quadratic fields [1]

Let K = Q(v4m? + 1) for some rational integer m. If hx =1
then m is prime.



Second we have the following theorem.

Theorem 3.2 Let n be any positive rational integer. If 2m + 3 = a" for
some positive rational integer a, then n|hg.

Proof: Let ¢ = a. Then from the proof of Theorem 3.1, we have
CK(Q,Air) 7& CK(2>P) if 1 <r<n.
Thus the order of A~! is n and we have proved the above theorem. O

Remark 5. Imposing some conditions on @ in Theorem 3.2, Uchida [4] and
Washington [5] constructed infinitely many cubic fields defined by f(z) =
23 + ma® — (m + 3)xr + 1 with class numbers divisible by a given rational
integer n.
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