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1 Preliminaries

In [2], Halbritter and Pohst computed the values of partial zeta functions
of totally real cubic fields. In this paper, applying their results to the sim-
plest cubic fields, we explicitly compute some special values of partial zeta-
functions of these fields. And as applications, we give a necessary condition
for class numbers of the simplest cubic fields to be 1 and construct the sim-
plest cubic fields with class numbers divisible by a given rational integer
n.

First we restate the main theorem of [2]. (The meaning of notations such

as

(
6

m1,m2

)
, B(3,m1,m2, 6− (m1 + m2), (EνBρ)

∗,0) will be explained in

Remarks 1, 2 after the statement of the theorem.)

Theorem 1.1 (Halbritter and Pohst) Let K be a totally real cyclic cubic
field with discriminant ∆. For α ∈ K the conjugates are denoted by α′ and
α′′, respectively. Furthermore, for α ∈ K, let Tr(α) := α + α′ + α′′ and
N(α) := αα′α′′. Let {ε1, ε2} be a system of fundamental units of K. Define
L by L := ln|ε1/ε

′′
1|ln|ε′2/ε′′2| − ln|ε′1/ε′′1|ln|ε2/ε

′′
2|. Let W be an integral ideal of

K with basis {ω1, ω2, ω3}.
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Let ρ = ω̂3 for a dual basis ω̂1, ω̂2, ω̂3 of W subject to

Tr(ωiω̂j) = δij (1 ≤ i, j,≤ 3).

For j = 1, 2, set

Ej =




1 1 1
εj ε′j ε′′j

ε1ε2 ε′1ε
′
2 ε′′1ε

′′
2




and

Bρ =




ρω1 ρω2 ρω3

ρ′ω′1 ρ′ω′2 ρ′ω′3
ρ′′ω′′1 ρ′′ω′′2 ρ′′ω′′3


 .

For τ1, τ2 ∈ K, ν = 1, 2, set

M(2, ν, τ1, τ2) := 0

if det Eν = 0, otherwise

M(2, ν, τ1, τ2) : = −4π6

135
sign(L)(−1)νN(ρ)2 detEν

|det(EνBρ)|3

·
6∑

m1=0

6∑

m2=0

(
6

m1,m2

)

· {B(3,m1,m2, 6− (m1 + m2), (EνBρ)
∗,0)

·
1∑

κ1=0

1∑

κ2=0

1∑

µ1=0

1∑

µ2=0

(
m1 − 1

1− (κ1 + κ2), 1− (µ1 + µ2)

)

·
(

m2 − 1
κ1, µ1

) (
5− (m1 + m2)

κ2, µ2

)

· Tr
K/Q(τκ1+κ2

1 τ ′1
µ1+µ2τ ′′1

4−(m1+κ1+κ2+µ1+µ2)

· τκ2
2 τ ′2

µ2τ ′′2
5−(m1+m2+κ2+µ2))},

where (EνBρ)
∗ denotes the transposed matrix of (EνBρ), and

C(2, ν, τ1, τ2) : = −4π6

3
sign(L)(−1)ν+1

· N(ρ)2B̃4(0)|detBρ|−1sign(detEν)

· {sign((τ1τ2 − τ ′1τ
′
2)(τ1 − τ ′1)) + sign((τ ′1τ

′
2 − τ ′′1 τ ′′2 )(τ ′1 − τ ′′1 ))
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+ sign((τ ′′1 τ ′′2 − τ1τ2)(τ
′′
1 − τ1)) + sign((τ ′′1 (τ1 − τ ′1)(τ

′
2 − τ2))

+ sign((τ1(τ
′
1 − τ ′′1 )(τ ′′2 − τ ′2)) + sign((τ ′1(τ

′′
1 − τ1)(τ2 − τ ′′2 ))

+ N(τ2)[sign((τ ′′1 (τ2 − τ ′2)(τ1τ2 − τ ′1τ
′
2))

+ sign((τ1(τ
′
2 − τ ′′2 )(τ ′1τ

′
2 − τ ′′1 τ ′′2 ))

+ sign((τ ′1(τ
′′
2 − τ2)(τ

′′
1 τ ′′2 − τ1τ2))]}.

Define

ζ(2,W, τ1, τ2) : = M(2, 1, τ1, τ2) + M(2, 2, τ2, τ1)

+ C(2, 1, τ1, τ2) + C(2, 2, τ2, τ1).

Let ζ(s, K0) be the partial zeta function of an absolute ideal class K0 of
K and W ∈ K−1

0 . Then we have

ζ(2, Ko) =
1

2
Norm(W )2ζ(2,W, ε1, ε2).

Remark 1. For k, l,m ∈ Z,
(

k
l, m

)
:= k!

l!m!(k−(l+m))!
, if k, l, m, k − (l + m) ∈ N ∪ {0},

(
−1
l, m

)
:= (−1)l+m

(
l + m

l

)
, if l, m ∈ N ∪ {0},

(
k

l, m

)
:= 0, otherwise.

Remark 2. Let A = (aij)n,n be a regular (n, n)-matrix with integral coeffi-
cients, (Aij)n,n := (detA)A−1. Let

B̃r(x) :=

{
Br(x− [x]) r = 0 or r ≥ 2 or r = 1 ∧ x 6∈ Z
0 r = 1 ∧ x ∈ Z ,

where Br(y) is defined as usual by zeyz(ez − 1)−1 =
∑∞

r=o Br(y)zr/r!. Then
for r = (r1, · · · , rn) ∈ (N ∪ {0})n,

B(n, r, A.0) =
|detA|−1∑

κ1=0

· · ·
|detA|−1∑

κn=0

n∏

i=1

B̃ri
(

1

detA

n∑

j=1

Aijκj).
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2 Special values of zeta functions of the sim-

plest cubic fields.

Let K be the simplest cubic fields defined by the irreducible polynomial over
Q

f(x) = x3 + mx2 − (m + 3)x + 1,

where m is a rational integer such that m2 +3m+9 is square-free. Then the

conductor of K is D = (2m+3)2+27
4

. Let α be the negative root of f(x) and
α′ = 1/(1 − α), α′′ = 1 − 1/α be its conjugates. Then {1, α, α2} is a basis
of K and {α, α′} is a system of fundamental units of K. (cf. [5]). Now we
have the following lemmas.

Lemma 2.1 Let q be a factor of 2m + 3. Then (q) is factorized in K with
the following form,

(q) = (q, α + 1)(q, α− 2)(q, α + m + 1).

Moreover, if q = 2m + 3 then (q, α + 1) = (α + 1), (q, α − 2) = (α − 2) and
(q, α + m + 1) = (α + m + 1) are principal.

Lemma 2.2 Let (q, α + 1) be the ideal of K in Lemma 2.1. Then

(q, α + 1) = [q, α + 1, α2 + α].

From Theorem 1.1, Lemma 2.1 and Lemma 2.2, we have the following
theorem.

Theorem 2.3 Let A be the ideal class of K which contains the ideal (q, α+1)
in Lemma 2.1. Then

ζK(2, A−1) =
π6

D3
{ 1

945q4
m6 +

1

105q4
m5

+ (
1

126q4
+

1

20q2
+

q2

3780
)m4

+ (− 2

21q4
+

3

10q2
+

q2

630
)m3

+ (− 33

112q4
+

167

240q2
+

139q2

15120
+

119

720
)m2
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+ (− 183

560q4
+

59

80q2
+

103q2

5040
+

119

240
)m

+ (− 9

70q4
+

3

10q2
+

11q2

630
+

7

10
)}.

In particular, if q = 1 or 2m + 3, i.e, A−1 is the principal ideal class P
of K, then

ζK(2, P ) =
π6

D3
{ 1

945
m6 +

1

105
m5 +

11

189
m4 +

13

63
m3

+
544

945
m2 +

292

315
m +

8

9
}.

Remark 3. Let W = (q, α+1). To prove Theorem 2.3, we need to compute
ζ(2,W, α, α′) in Theorem 1.1. But this computation is very long and elemen-
tary. So we omit the proof. However we can check our values by comparing
them with tables in [2].

3 Applications

Let hK be the class number of the simplest cubic field K. First we have the
following theorem.

Theorem 3.1 If hK = 1 then 2m + 3 is prime.

Proof: Suppose that 2m + 3 = qr (q 6= 1 and r 6= 1) is a composite integer.
If ζK(2, A−1) = ζK(2, P ), then

(r2 − 1)((q6 − q2)r4 + (85q4 − 190q2 + 105)r2 + (210q2 − 210)) = 0.

But it is easily seen that this is impossible. Thus ζK(2, A−1) 6= ζK(2, P ). So
hK > 1 and we have proved the above theorem. 2

Remark 4. Though all the simplest cubic fields with class number 1 was
determined by Lettl [3], it seems interesting to note that Theorem 3.1 can
be regarded as a cubic analogue of the following result on quadratic fields [1]

Let K = Q(
√

4m2 + 1) for some rational integer m. If hK = 1
then m is prime.
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Second we have the following theorem.

Theorem 3.2 Let n be any positive rational integer. If 2m + 3 = an for
some positive rational integer a, then n|hK.

Proof: Let q = a. Then from the proof of Theorem 3.1, we have

ζK(2, A−r) 6= ζK(2, P ) if 1 ≤ r < n.

Thus the order of A−1 is n and we have proved the above theorem. 2

Remark 5. Imposing some conditions on a in Theorem 3.2, Uchida [4] and
Washington [5] constructed infinitely many cubic fields defined by f(x) =
x3 + mx2 − (m + 3)x + 1 with class numbers divisible by a given rational
integer n.

Acknowledgement. The author would like to thank Prof. H. K. Kim
who first computed ζK(2, P ) in Theorem 2.3 and kindly showed me his result
which was helpful in computing ζK(2, A−1) in Theorem 2.3. The author also
would like to thank the referee for many valuable remarks.

References

[1] N. C. Ankeny, S. Chowla and H. Hasse, “On the class-number of the
maximal real subfield of a cyclotomic field,” J. reine angew. Math. 217
(1965), 217–220.

[2] U. Halbritter and M. Pohst “On the computation of the values of the
zeta functions of totally real cubic fields,” J. Number Theory 36, (1990),
266–288.

[3] G. Lettl, “A lower bound for the class number of certain cubic number
fields,” Math. Compu. 46, No. 174 (1986), 659–666.

[4] K. Uchida, “Class numbers of cubic cyclic fields,” J. Math. Soc. Japan
26, No. 3 (1974), 447–453.

[5] L. C. Washington, “Class numbers of the simplest cubic fields,” Math.
Compu. 48, No. 177 (1987), 371–384.

6


