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1 Introduction and statement of results

For a number field k and a prime number l, we denote by h(k) the class
number of k and by λl(k) the Iwasawa λ- invariant of the cyclotomic Zl-
extension of k, where Zl is the ring of l-adic integers.

Let l be an odd prime number. Using the Kronecker class number rela-
tion for quadratic forms, Hartung [3] proved that there exist infinitely many
imaginary quadratic fields k whose class numbers are not divisible by l. For
the case l = 2, this is an immediate consquence of Gauss genus theory.
For the case l = 3, Davenport and Heilbronn [2] proved the stronger result
that a positive proportion of imaginary quadratic fields has class number
coprime to 3. Recently, using Sturm’s work [11] on the congruence of mod-
ular forms, Kohnen and Ono [7] obtained a lower bound for the number of
Dk, −X < Dk < 0, where Dk is the discriminant of an imaginary quadratic
field k such that h(k) 6≡ 0 (mod l) and X is a sufficiently large positive real
number. Using the same method, subject to a mild condition on l, Ono [9]
obtained similar results for real quadratic fields.

On the other hand, using the idea of Hartung and Eichler trace formula
combined with the l-adic Galois representation attached to the Jacobian
variety J = J0(l) of the modular curve X = X0(l), Horie [4] proved that
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there exist infinitely many imaginary quadratic fields k such that l does not
split in k and l does not divide h(k). Later Horie and Onishi [5] obtained more
refined results. By a theorem of Iwasawa [6], these results imply that there
exist infinitely many imaginary quadratic fields k with λl(k) = 0. For the case
l = 2, this is also an immediate consquence of Gauss genus theory. For the
case l = 3, by refining Davenport and Heilbronn’s result [2], Nakagawa and
Horie [8] gave a positive lower bound on the density of imaginary quadratic
fields k and real quadratic fields k with λl(k) = 0. Recently, Taya [12]
improved the result of Nakagawa and Horie on real quadratic fields for the
case l = 3 and Ono [9] obtained a lower bound on the number of real quadratic
fields k with λl(k) = 0 for the case 3 < l < 5000.

In this note, refining Kohnen and Ono’s method [7, 9], we obtain a lower
bound for the number of Dk, −X < Dk < 0, where Dk is the discriminant
of an imaginary quadratic field k such that h(k) 6≡ 0 (mod l) and l does
not split in k and X is a sufficiently large positive real number. Similary,
by a theorem of Iwasawa [6], this is also a lower bound for the number of
imaginary quadratic fields k with λl(k) = 0.

Theorem 1.1 Let l > 3 be an odd prime and p be an odd prime such that
p ≡ 1 (mod 8), p ≡ −2 (mod l) and ( t

p
) = 1 for all prime t, 2 < t < l. Then

there exist an integer dlp, 1 ≤ dlp ≤ 3
4
(l + 1)(p + 1) such that dlplp 6= nlp2 for

any n, 1 ≤ n ≤ l and let k = Q(
√
−dlplp) be the imaginary quadratic field,

then h(k) 6≡ 0 (mod l) and l does not split in k.

Corollary 1.2 Let l > 3 be an odd prime and ε > 0. Let Dk be the discrim-
inant of imaginary quadratic field k with λl(k) = 0. Then for all sufficiently
large X > 0,

]{Dk| −X < Dk < 0} >>l

√
X

logX
.

2 Proof of results

Proof of Theorem 1.1. Let l and p be odd primes. Let θ(z) :=
∑

n∈Z qn2
be

the classical theta function, where q = e2πiz, z ∈ C. Define r(n) by

∞∑

n=0

r(n)qn := θ3(z) = 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + · · · .
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It is well known that

r(n) =





12H(4n) if n ≡ 1, 2 (mod 4)
24H(n) if n ≡ 3 (mod 4)
r(n/4) if n ≡ 0 (mod 4)
0 if n ≡ 7 (mod 4),

(1)

where H(N) is the Hurwitz-Kronecker class number for a natural number
N ≡ 0, 3 (mod 4). If −N = Dkf

2 where Dk is the discriminant of an
imaginary quadratic field k, then H(N) is related to class number of k by
the formula [1]:

H(N) =
h(k)

ω(k)

∑

d|f
µ(d)(

Dk

d
)σ1(f/d), (2)

where ω(k) is half the number of units in k = Q(
√

Dk), σ1(n) denotes the
sum of the positive divisors of n and µ(d) is Möbius function defined by
µ(d) = (−1)k if d is equal to a product of k distinct primes (including k = 0)
and µ(d) = 0 otherwise.

Define (Ulpθ
3)(z), (Vlpθ

3)(z) and (UlVpθ
3)(z) in the usual way, i.e,

(Ulpθ
3)(z) :=

∑
n≥0 r(lpn)qn = 1 +

∑
n≥1 r(lpn)qn,

(Vlpθ
3)(z) :=

∑
n≥0 r(n)qlpn = 1 +

∑
n≥1 r(n)qlpn (3)

(UlVpθ
3)(z) :=

∑
n≥0 r(nl)qnp = 1 +

∑
n≥1 r(nl)qnp.

Then Ulpθ
3, Vlpθ

3, and UlVpθ
3 are modular forms of weight 3

2
on Γ0(4lp) with

character (4lp
· ) [10].

To prove Theorem 1.1, we need the following lemmas.

Lemma 2.1 Let l and p be odd primes. If (−np
l

) = 1 for some n, 1 ≤ n ≤ p,
then r(npl2) ≡ 0 (mod l).

Proof: Suppose that (−np
l

) = 1 for some n, 1 ≤ n ≤ p. Then from (2), we
have

r(npl2) = r(np)(l + 1− (
−np

l
)) = r(np)l ≡ 0(mod l)

and prove the lemma. 2
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Lemma 2.2 Let l be an odd prime such that l ≡ 5 or 7 (mod 8). Let p be
an odd prime such that p ≡ 1 (mod 8), p ≡ −2 (mod l) and ( t

p
) = 1 for all

prime t, 2 < t < l. Then r(nlp2) ≡ 0 (mod l) for all n, 1 ≤ n < l.

Proof: From the assumption on l and p in the above, we easily see that
(−nl

p
) = −1 for all n, 1 ≤ n < l. Thus from (2), we have

r(nlp2) = r(nl)(p + 1− (
−nl

p
)) ≡ 0 (mod l),

for all n, 1 ≤ n < l and prove the lemma. 2

Similary we have

Lemma 2.3 Let l be an odd prime such that l ≡ 1 or 3 (mod 8). Let p be
an odd prime such that p ≡ 1 (mod 8), p ≡ −2 (mod l) and ( t

p
) = 1 for all

prime t, 2 < t < l. Then r(nlp2) ≡ −2r(nl) (mod l) for all n, 1 ≤ n < l.

If g =
∑∞

n=0 a(n)qn has integer coefficients then define ordl(g) by

ordl(g) := min{n|a(n) 6≡ 0(mod l)}.
Let Mk(Γ0(N), χ) be the space of modular forms of weight k on Γ0(N) with
character χ. Sturm [11] proved that if g ∈ Mk(Γ0(N), χ) has integer coeffi-
cients and

ordl(g) >
k

12
[Γ0(1) : Γ0(N)],

then g ≡ 0 (mod l). He proved this for integral k and trivial χ but Kohnen
and Ono[7] noted that this is also true for the general case.

Now we can prove Theorem 1.1. From now on we assume that l > 3 be
an odd prime and p be an odd prime such that p ≡ 1 (mod 8), p ≡ −2 (mod
l) and ( t

p
) = 1 for all prime t, 2 < t < l.

Case I l ≡ 5 or 7 (mod 8). First we claim that (Ulpθ
3)(z) 6≡ (Vlpθ

3)(z) (mod
l). To see this, by (3), it is enough to show that the coefficients of qlp in
(Ulpθ

3)(z) and (Vlpθ
3)(z) are not congruent modulo l, i.e., r(l2p2) 6≡ 6 (mod

l). From (1) and (2), we see that

r(l2p2) = 12H(4l2p2) = 6(l + 1− (
−4

l
))(p + 1− (

−4

p
)).
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Thus from the choice of l and p, we have

r(l2p2) ≡
{

0 (mod l) if l ≡ 5 (mod 8)
−24 (mod l) if l ≡ 7 (mod 8)

and prove the claim .
Now we note that the relevant Sturm bound for the modular forms in

M 3
2
(Γ0(4lp), (4lp

· )) is 3
4
(l + 1)(p + 1). Then by applying Sturm’s theorem [11]

to the modular form g(z) = (Ulpθ
3)(z)− (Vlpθ

3)(z) in M 3
2
(Γ0(4lp), (4lp

· )), we

have that there exist an integer dlp, 1 ≤ dlp ≤ 3
4
(l + 1)(p + 1) < lp (when

l, p ≥ 7 or l = 5, p > 9) such that r(dlplp) 6≡ 0 (mod l). From Lemma 2.2, we
know that for such dlp, dlplp 6= nlp2 for any n, 1 ≤ n < l. Furthermore from

Lemma 2.1, we see that if k = Q(
√
−dlplp) be the imaginary quadratic field

and Dk be the discriminant of k then (Dk

l
) = 0 or (Dk

l
) = −1, i.e., l does not

split in k. Thus we prove Theorem 1.1 for the case l ≡ 5 or 7 (mod 8).

Case II l ≡ 1 or 3 (mod 8). Let f(z) = (Ulpθ
3)(z) + 2(UlVpθ

3)(z) and
g(z) = 3(Vlpθ

3)(z) be modular forms in M 3
2
(Γ0(4lp), (4lp

· )). Then we can also

show that f(z) 6≡ g(z) (mod l). By the similar way in Case I, from Sturm’s
theorem, Lemma 2.1, and Lemma 2.3, we can prove Theorem 1.1 for the case
l ≡ 1 or 3 (mod 8).

Proof of Corollary 1.2. Let l > 3 be an odd prime. First we note that there
exist a natural number r, 1 ≤ r ≤ 8l

∏
t, where the product runs over all

prime t, 2 < t < l, such that if a natural number s ≡ r (mod 8l
∏

t), then
s ≡ 1 (mod 8), s ≡ −2 (mod l) and s ≡ 1 (mod t) for all prime t, 2 < t < l.
Then we easily see that if a prime p be in the arithmetic progression such
that p ≡ r (mod 8l

∏
t) then p satisfies the conditions in Theorem 1.1.

Let p1 < p2 < · · · be the primes in such arithmetic progression in increas-
ing order. Then in the notation from the proof of Theorem 1.1, if i < j < k
and Di, Dj, Dk are the discriminants of imaginary quadratic fields associated
to dlpi

lpi, dlpj
lpj, dlpk

lpk by (1) and (2), then at least two of them are different
by Theorem 1.1. Moreover, it is obvious that Di > −3lpi(l + 1)(pi + 1) >
−4l2p2

i (when l, pi ≥ 7 or l = 5, pi > 9). Thus from Dirichilet’s theorem on
primes in arithmetic progression, we have the corollary.
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