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Let p be an odd regular prime number. We prove that there exist infinitely many
totally real number fields k of degree p&1 whose class numbers are not divisible
by p. Moreover, for certain regular prime number p, we prove that there exist
infinitely many totally real number fields k of degree p&1 whose Iwasawa *p-,
+p -invariants vanish. � 1999 Academic Press

1. INTRODUCTION

For a number field k and a prime number p, we denote by h(k) the class
number of k and by *p(k), +p(k) the Iwasawa *-, +-invariants of the
cyclotomic Zp -extension of k, where Zp is the ring of p-adic integers.

Let p be an odd prime number. Hartung [5] proved that there exist
infinitely many imaginary quadratic fields k whose class numbers are not
divisible by p. Later, Horie [7] proved that there exist infinitely many
imaginary quadratic fields k such that p does not divide h(k) and p does
not split in k. Thus from a theorem of Iwasawa [8], their exist infinitely
many imaginary quadratic fields k with *p(k)=+p(k)=0. Recently, Naito
[11] generalized the results of Hartung or Horie to the case of CM-fields,
that is, totally imaginary quadratic extensions over a totally real number
field.

However, for the case of real number fields, very little is known.
Indivisibility of class numbers of real number fields is closely related to
Greenberg's conjecture which says that both *p(k) and +p(k) always vanish
for any totally real number field k and any prime number p. It is well-
known that +p(k) always vanishes for any abelian number field k and any
prime number p by Ferrero and Washington [4], but for *p(k), very little
is known. Nakagawa, and Horie [13] proved that there exist infinitely
many real quadratic fields k such that 3 does not divide h(k) and 3 does
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not split in k. Thus, similarly, there exist infinitely many real quadratic
fields k with *3(k)=+3(k)=0. Recently, Kraft [10] also showed that the
existence of such an infinite family of real quadratic fields by using a result
of Jochonowitz.

In this paper, we generalize the results of Nakagawa and Horie or Kraft
and prove the following theorem.

Theorem 1.1. Let p be an odd regular prime number. Then there exist
infinitely many totally real number fields k of degree p&1 whose class
numbers are not divisible by p.

Moreover, we show the following theorem.

Theorem 1.2. Let p be an odd regular prime number such that p#3
(mod 4) and satisfies the conditions (1), (2), (3), and (4) which are stated in
Section 5. Then there exist infinitely many totally real number fields k of
degree p&1 such that p does not divide h(k) and p totally ramifies in k. Thus
there exist infinitely many totally real number fields of degree p&1 with
*p(k)=+p(k)=0.

If p=3, since it is easy to see that 3 satisfies the conditions in
Theorem 1.2, this is the results of Nakagawa and Horie or Kraft.

In order to get these theorems, we use Parry's work [16] on class
number relations between certain pairs of number fields and Naito's work
[11, 12] on indivisibility of the class numbers of CM-fields. In Section 2
and Section 3, we briefly introduce their works and in Section 4 and
Section 5, using them we prove Theorem 1.1 and Theorem 1.2.

2. CLASS NUMBER RELATION

Let F be a totally real number field. Let p be an odd prime number and
`p a primitive p th root of unity. Let K3=F (`p) be the totally imaginary
quadratic extension over F which contains `p , K2 a totally imaginary quad-
ratic extension over F such that K2 {K3 , K=K2(`p) a bicyclic biquadratic
extension over F, and finally K1 the maximal real subfield of K. Then using
class field theory and Kuroda's class number relation, Parry [16] obtained
the following class number relation between h(K1) and h(K2).

Theorem 2.1. Suppose that p does not divide h(K3). Then the prime
number p divides h(K2) if and only if p divides h(K1) or

X p#e mod(1&`p) p

is solvable in K for some unit e of K1 which is not a pth power.

250 DONGHO BYEON



If p=3, K3=Q(`3), then this is the result of Herz [6]. For the case
p=5, K3=Q(`5) and p=7, K3=Q(`7), the above class number relations
are studied in great detail by Parry [15, 16] and Endô [2, 3].

3. INDIVISIBILITY OF CLASS NUMBERS OF CM-FIELDS

Let F be a totally real number field. For a prime number p, we denote
by n( p) the maximum value of n such that primitive pn th roots `pn of unity
are at most of degree 2 over F. If F is fixed, we have n( p)=0 for all but
finitely many p. Thus we can put |F=2n(2)+1 >p{2 pn( p). Let `F (s) be the
Dedekind zeta function of F. Serre [18] proved that |F `F (&1) is a
rational integer. Using trace formula of Hecke operators and p-adic
representations related to automorphic forms obtained from division
quaternion algebras over F, Naito [11] proved the following theorem.

Theorem 3.1. Let F be a totally real number field. Let p be an odd prime
number which does not divide |F `F (&1). Then there exist infinitely many
totally imaginary quadratic extensions k over F such that the relative class
number of k is not divisible by p and each prime ideal of F over p does not
split in k.

If F=Q, then this is the result of Hartung [5] or Horie [7].
On the other hand, Naito mentioned that he did not know whether the

condition on |F `F (&1) in Theorem 3.1 is indispensable or not. Thus he
studied the case without the condition (see [12]).

4. PROOF OF THEOREM 1.1

Let p be an odd regular prime number and `p a primitive p th root of
unity. Let F=Q(`p+`&1

p ) be the maximal real subfield of the p th
cyclotomic field Q(`p). To use the class number relation in Section 2, we set
K3=Q(`p), K2=F (- &$) a totally imaginary quadratic extension over F,
where $ is a totally positive element in F, K=F (- &$, `p) a bicyclic
biquadratic extension over F, and finally K1 the maximal real subfield of K.
We note that the degrees of K1 , K2 , and K3 are all p&1. Since p is a
regular prime number, p does not divide h(K3). Thus we can apply the class
number relation in Section 2 to our case and have the following relation
between h(K1) and h(K2).

If p does not divide h(K2) then p does not divide h(K1).
Thus we know that if there exist infinitely many totally imaginary

quadratic extensions K2 over F such that p does not divide h(K2), then
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there exist infinitely many totally real number fields of K1 of degree p&1
such that p does not divide h(K1).

From Theorem 3.1, we conclude that to prove Theorem 1.1, it is enough
to show the following lemma.

Lemma 4.1. Let p be an odd regular prime number and `p a primitive pth
root of unity. Let F=Q(`p+`&1

p ) be the maximal real subfield of the pth
cyclotomic field Q(`p). Then p does not divide |g `F (&1).

Proof. First we note that |F=23 } 3 } p. Using the method of Serre in
[18], Brown [1] computed the exact fractional part of `k(&1) for
arbitrary totally real number fields k. One of his results is the following:
Let p be an odd prime number and `p a primitive p th root of unity. Let
k be a totally real number field. If k is the maximal real subfield of k(`p)
and no prime of k lying over p splits in k(`p), then the power of p dividing
the denominator of `k(&1) is the same as the power of p dividing the
denominator of h&�|, where h& is the relative class number of k(`p) and
| is the number of roots of unity in k(`p).

If we set k=F, then F satisfies the conditions in the above. Since p is a
regular prime, p does not divide the relative class number h&. We know
that |=2p. Thus we have that the exact power of p dividing the
denominator of `F (&1) is 1. Hence we have that p does not divide |F (&1)
and this proves the lemma. K

This completes the proof of Theorem 1.1.

5. PROOF OF THEOREM 1.2

Let p be an odd regular prime number such that p#3 (mod 4) and `p

be a primitive p th root of unity. Let F=Q(`p+`&1
p ) be the maximal real

subfield of the p th cyclotomic field Q(`p). Suppose that there exist a prime
number q{ p with the following properties:

(1) q#1 mod 4,

(2) q is a non-quadratic residue modulo p,

(3) q remains prime in F�Q,

(4) the class number of k0=F (- &q) is prime to p.

First we claim that there are only finitely many totally imaginary
quadratic extensions over F which contain algebraic integers whose norm
to F are equal to q. Suppose that a totally imaginary quadratic extension
k over F has an algebraic integer x+ y - &$ with x, y, $ # F such that
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x2+$y2=q and $ is totally positive. Note that y should not be zero. Since
x& y - &$ is also an algebraic integer in k, X=2x is an algebraic integer
in F. Now we can write $=(q&(X 2�4))�y2 and

k=F (- &$)=F (- &(4q&X 2),

where X is an algebraic integer in F and 4q&X 2 is totally positive. Then
we easily see that there exist only finitely many algebraic integers X such
that 4q&X 2 is totally positive and the claim follows.

Let k0=F (- &q), k1 , ..., kt be all totally imaginary quadratic extensions
over F which contain algebraic integers whose norm to F are equal to q.
Let p$i (i{0) be a prime ideal of F which splits completely in ki �F (i{0)
and remains prime in k0 �F.

Since a division quaternion algebra B over F can be determined by
giving an even number of archimedean or non-archimedean primes of F
which are ramified in B�F, we can take a division quaternion algebra B�F
as follows:

(i) only one real prime is unramified in B�F and other real primes
are ramified in B�F

(ii) p$1 , ..., p$t are ramified in B�F,

(iii) q is unramified in B�F,

(iv) the other prime ideals r which are ramified in B�F remain prime
in k0 �F.

Let S(s, \) be the space of automorphic forms associated with B�F in
[11] and T(r) the Hecke operators acting on S(s, \) for a prime ideal r
of F. Let ,S, \ : Gal(F� �F ) � GL2 dim C S(S, \)(Qp) be the p-adic representation
which Ohta got in [14]. Let 00 be the set of isomorphism classes of orders
o of totally imaginary quadratic extensions over F in B satisfying the
following properties:

(i) no prime factor of the discriminant D(B�F ) of B�F splits in F (o),

(ii) the conductor of o is prime to D(B�F ).

Let E and E+ be the group of units and the group of totally positive
units of the ring of integers of F respectively. Let h(o) be the class number
of o and E(o) the group of units in o. For a prime ideal p in F, we define
(o�p) by (o�p)=1, &1, and 0 when p splits completely, remains prime, and
ramifies in F(o)�F respectively. We denote by &=&B�F the reduced norm of
B�F. We put n=2 if p�5 and n=4 if p=3. Now we can state trace
formula of Hecke operator T(r) for a prime ideal r of F,
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tr .T(r)=&
[E : E+]

2
:

o # 00

h(o)
>p | D(B�F ) (1&(o�p))

[E(o : E)]

_ :

: (mod E)
: # J(o)

tr .9(:)
`n+1

: &'n+1
:

`:&':
(det :)&n�2,

where J(o)=[: # o : : � F, (&(:))=r], `: , ': are eigenvalues of : and 9 is
a representation introduced in [11, Sect. 1].

From the choice of B�F and q, by the similar argument in [12], we see
that to compute the trace of Hecke operator T((q)), it is enough to
consider only the ring of integers ok0

of k0 . Put :=- &q. Then we get

tr.T((q))=&
[E : E+]

2
h(k0) `

p | D(D�F )
\1&\o

p++
_tr.9(:)

`n+1
: &'n+1

:

`:&':
q&n�2.

Moreover, since : satisfies (2), (3), (4), and (5) in [12] and p does not
divide h(k0), we can also prove that

tr .T((q))�0 (mod p).

We put Hp=[g # GL2 dim CS(S, \)(Qp) : g#1 mod p]. Let Mp be the fixed
field by ,&1

s, \(Hp). From (iii), q does not divide pD(B�F ). So from the
properties of ,s, \ , (q) does not ramify in Mp�F. But (q) ramifies in k0 �F.
Thus we have Mp & k0=F. From Tchebotarev density theorem [9] and
class field theory, we know that there exist infinitely many prime numbers
s such that s#q (mod p) and (s) decomposes in Mp �Q in the same manner
as (q) and remains prime in k0�Q. Let s be one of these prime numbers.
Then, from s#q (mod p), we see that (s) remains prime in F�Q and the
prime ideal (s) of F decomposes in Mp �F in the same manner as (q) and
remains prime in k0 �F. Thus there is no element ; of k0 such that
(Nk0 �F (;))=(s). So no order of k0 appears in the formula of tr .T((s)).
Because tr .T((s))=tr .T((q))�0 (mod p), we see that F has another
totally imaginary quadratic extension k$ whose class number is not
divisible by p. Let k$=F(- &$$) be another such totally imaginary quad-
ratic extension over F, where $$ is a totally positive algebraic integer in F.
Then there exist x, y in F satisfying x2+$$y2=s. We claim that $$ is prime
to p. Otherwise, we have x2#s (mod p). But since s#q (mod p) and q is
a non-quadratic residue modulo p, we have a contradiction and get the
claim.
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Finally, from the above argument and from the same argument in [12],
we get the following conclusion: Let p be an odd regular prime number
such that p#3 (mod 4) and `p be a primitive p th root of unity. Let
F=Q(`p+`&1

p ) be the maximal real subfield of the p th cyclotomic field
Q(`p). If there exist a prime number q{ p satisfying (1), (2), (3), and (4),
then there exist infinitely many totally imaginary quadratic extensions
k$=F(- &$$) over F such that p does not divide h(k$) and p is prime to
the totally positive algebraic integer $$ in F.

Now, we set K3=Q(`p), K2=k$=F(- &$$) the totally imaginary quad-
ratic extension over F in the above, K=k$(`p)=F(- &$$, `p) a bicyclic

biquadratic extension over F, and finally K1=F(- p$$) the maximal real
subfield of K. Then from the class number relation in Section 2 and the
above conclusion, we have there exist infinitely many totally real number
fields k=F(- p$$) of degree p&1 such that p does not divide h(k) and p
totally ramifies in k.

From a theorem of Iwasawa in [8], we get that for these totally real
number fields k, *p(k)=+p(k)=0. This completes the proof of Theorem 1.2.

Now, we give some examples.

Example 1. Let p=3 then F=Q. Let q=5 then q satisfies (1), (2),
and (3). Since the class number of k0=Q(- &5) is 2, q satisfies also (4).
Thus we have that there exist infinitely many real quadratic fields k such
that 3 does not divide h(k) and 3 totally ramifies in k. This is the result of
Nakagawa and Horie [13] or Kraft [10].

Example 2. Let p=7 then F=Q(`7+`&1
7 ) is a totally real cyclic cubic

field. Let q=5 then q satisfies (1),(2), and (3). Since the class number of
k0=Q(`7+`&1

7 , - &5) is 2 (cf. [17]), q satisfies also (4). Thus we have
that there exist infinitely many totally real number fields k of degree 6 such
that 7 does not divide h(k) and 7 totally ramifies in k.

Finally, we suggest some problems which naturally arise from this work.

Problem 1. Let p be an odd regular prime number. We note that the
assumption that p#3 (mod 4) is indispensable for our proof of
Theorem 1.2. For example, if p=5 then there is no prime number s such
that (s) remains prime in a bicyclic biquadratic field ko =Q(`5+`&1

5 ,
- &q)�Q. Thus we can not show that p is prime to $$ in the proof of
Theorem 1.2.Canweremovetheassumptionthatp#3 (mod 4) inTheorem 1.2?

Problem 2. Let p be an odd regular prime number and `p a primitive
pth root of unity. Let F=Q(`p+`&1

p ) be the maximal real subfield of the
pth cyclotomic field Q(`p). From the class number relation in Section 2
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and class field theory (cf. [16, Corollary 2 and Corollary 3]), we know that
if p#3 (mod 4) (resp. p#1 (mod 4)) and F has infinitely many totally
imaginary quadratic extensions F(- & pm) (resp. F((`p&`&1

p ) - m))
whose ideal class numbers are not divisible by p, where m is a positive
square free integer, then there exist infinitely many real quadratic fields
Q(- m) whose ideal class numbers are not divisible by p. Indivisibility of
class numbers of real quadratic fields by an odd prime number p{3 is a
well known open problem. Can we construct infinitely many the such
totally imaginary quadratic extensions over F?

Problem 3. To use the class number relation in Section 2, p should be
a regular prime. Thus the assumption that p is a regular prime is essential
to our proofs of Theorem 1.1 and Theorem 1.2. Can we generalize these
theorems to an irregular prime p?
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