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ABSTRACT. We give some necessary conditions for class numbers
of the simplest cubic fields to be 3 and using Lettl’s lower bounds of
residues at s = 1 of Dedekind zeta functions attached to cyclic cubic
fields [?], determine all the simplest cubic fields of class number 3.

1 Introduction

Let m ≥ −1 be a rational integer such that m 6≡ 3 mod 9 and m2 + 3m + 9
is square-free or 9 times a square-free rational integer. Let K be the cyclic
cubic field defined by the irreducible polynomial over the rational number
field Q of the following form

f(x) = x3 + mx2 − (m + 3)x + 1.

Let α be the negative root of f(x). Then α′ = 1/(1−α) and α′′ = 1−1/α are
its conjugates. Moreover {1, α, α2} is an integral basis of K and {α, α′} is a
fundamental system of units of K. The discriminant of K is the discriminant
of the polynomial of f(x): D2 = (m2 + 3m + 9)2 and the conductor of K is
D = (m2 + 3m + 9) = ((2m + 3)2 + 27)/4. We call K be the simplest cubic
field ([?] [?]).

In [?], Lettl has obtained a lower bound of residues at s=1 of Dedekind
zeta functions attached to cyclic cubic fields and applying his lower bound
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to the simplest cubic fields with prime conductors, has shown that there are
exactly seven simplest cubic fields of class number 1: their conductors D=7,
13, 19, 37, 79, 97, 139.

In this paper, first we derive some necessary conditions for class numbers
of the simplest cubic fields to be 3 and finally applying Lettl’s lower bound,
determine all the simplest cubic fields of class number 3.

2 Some necessary conditions for class num-

bers of the simplest cubic fields to be 3

First we give the preliminary results. Let hK be the class number of the
simplest cubic field K. Let N

K/Q denote the norm of an element in K and
N denote the norm of an ideal in K.

Lemma 2.1 Let f be a factor of 2m + 3. Then (f) is factorized in K with
the following form,

(f) = (f, α + 1)(f, α− 2)(f, α + m + 1),

in fact, these three factors are conjugated under Galois action. Moreover, if
f = 2m + 3 then (f, α + 1), (f, α− 2) and (f, α + m + 1) are principal.

Proof: First we note that

(α + 1)(α− 2)(α + m + 1) = α3 + mα2 − (m + 3)α + 1− (2m + 3)

= −(2m + 3).

By a direct computation, we have

(f, α + 1)(f, α− 2)(f, α + m + 1)

= f(f 2, f(α + 1), f(α− 2), f(α + m + 1), (α− 2)(α + m + 1),

(α + 1)(α + m + 1), (α + 1)(α− 2),−g)

= fa,

where 2m + 3 = fg.
It is not difficult to see that a = (1). Note that α− 2 = − 1

α′ (α + 1)′ and
α + m + 1 = −α′(α + 1)′′. Then we know that the three factors of (f) are
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conjugated under Galois action. From the fact (α + 1)(α− 2)(α + m + 1) =
−(2m+3), we easily see that (2m+3, α+1) = (α+1), (2m+3, α−2) = (α−2)
and (2m+3, α +m+1) = (α +m+1). Thus we have proved the lemma. 2

Lemma 2.2 (Lemmermeyer and Pethö [?]) For all algebraic integers γ in
K, either |N

K/Q(γ)| ≥ 2m+3 or γ is associated to a rational integer. More-

over if |N
K/Q(γ)| = 2m + 3 then γ is associated to one of the conjugates of

α + 1.

As an application of Lemma 2.2, we have the following theorem.

Theorem 2.3 Let K be a simplest cubic field. If hK = 1 then 2m + 3 is a
prime.

Proof: Suppose that 2m+3 be a composite integer and p be a prime factor
of 2m + 3. Then p can not inert in K by Lemma 2.1. Let p denote a prime
divisor over p in K. Then N(p) = p < 2m + 3. So p can not be principal by
Lemma 2.2 and hK 6= 1. Thus we have proved the theorem. 2

Remark. Though all the simplest cubic fields of class number 1 was deter-
mined, it seems interesting to note that Theorem 2.3 can be a cubic analogue
of the following well-known work for quadratic fields [?]

Let K = Q(
√

4m2 + 1) for some rational integer m. If hK = 1
then m is prime.

Proposition 2.4 Let K be a simplest cubic field. If hK = 3 then D =
m2 + 3m + 9 = 9p where p is a prime or D = m2 + 3m + 9 = pq where p < q
are both primes and p is not cubic residue modulo q or q is not cubic residue
modulo p.

Proof: See [?] [?] or [?] for a proof of a more general theorem. 2

From now on, we only have to consider the simplest cubic fields with
conductors D = 9p where p is a prime or D = pq where p < q are both
primes. To give more necessary conditions for class numbers of the simplest
cubic fields to be 3, we need the following proposition and lemmas. We only
give the details of the case D = pq. Let [a] denote the ideal class containing
an ideal a in K.
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Proposition 2.5 Let K be the simplest cubic field with conductor D = pq
where p < q are both primes. Let p = p3 where p is a prime ideal in K.
Then p is not principal. Specially if hK = 3 then the ideal class group of K
is generated by [p].

Proof: Since p <
√

m2 + 3m + 9 < 2m + 3, N(p) = p < 2m + 3. From
Lemma 2.2, we know that p is not principal and the order of [p] is 3. Thus
we have proved the proposition. 2

Lemma 2.6 Let K be the simplest cubic field with conductor D = pq where
p < q are both primes. If hK = 3 and a prime r splits in K then r3 ≥ 2m+3
and p2r ≥ 2m + 3.

Proof: Let p = p3 and r = r1r2r3, where p, r1, r2 and r3 are prime
ideals in K. Suppose that r3 < 2m + 3. Then N(r1) = r < 2m + 3 and
N(r3

1) = r3 < 2m + 3. From Lemma 2.2, r1 and r3
1 are not principal. Thus

hK 6= 3. So r3 should be greater than or equal to 2m + 3.
Now we consider the ideal p2r1. If hk = 3 then from Proposition 2.5,

[p2r1] = I, [p] or [p2], where I is the principal ideal class. If [p2r1] = I, then
N(p2r1) = p2r ≥ 2m + 3, from Lemma 2.2. If [p2r1] = [p], then [pr1] = I
and N(pr1) = pr ≥ 2m + 3, from Lemma 2.2. So p2r > pr ≥ 2m + 3. If
[p2r1] = [p2], then [r1] = I and N(r1) = r ≥ 2m + 3, from Lemma 2.2. So
p2r > r ≥ 2m + 3. Thus we have proved the lemma. 2

Lemma 2.7 Let K be the simplest cubic field with conductor D = pq where
p < q are both primes. If hK = 3 then 2m + 3 = su, where s is a prime and
u = 1 or 3.

Proof: Let s be the smallest prime factor of 2m + 3. From Lemma 2.1, s
splits and from lemma 2.2, s3 ≥ 2m + 3. Thus we have 2m + 3 = s, s2, st
or s3, where s < t are both primes. But if 2m + 3 = s2 then hk is even by
Lemma 2.1. So if hK = 3 then 2m + 3 should not be a square of a prime.

Now we consider the case 2m + 3 = st, where s < t are both primes. Let
s = s1s2s3 and t = t1t2t3, where si, tl are prime ideals in K for 1 ≤ i, l ≤ 3
such that s1t1 = (α+1), s2t2 = (α−2) and s3t3 = (α+m+1) in Lemma 2.1.
From Lemma 2.2, we know that si are not principal, since N(si) = s < 2m+3
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for 1 ≤ i ≤ 3. We claim that [si] 6= [sj] if i 6= j, for 1 ≤ i, j ≤ 3. For example,
suppose that [s1] = [s2]. Since s1t1 is principal, s2t1 is also principal. Note
that N(s2t1) = st = 2m + 3. From Lemma 2.2, s2t1 = (γ), where γ is one of
the conjugates of α + 1. This means s2t1 = s1t1, s2t2 or s3t3. But we easily
see that it is impossible. We can also prove the other cases similarly. Thus
we have [si] 6= [sj] if i 6= j, for 1 ≤ i, j ≤ 3 and hk > 3. So if hK = 3, then
2m + 3 should not be a product of two different primes.

Thus we have completely proved the lemma. 2

From Lemma 2.6 and Lemma 2.7, we have the following theorem.

Theorem 2.8 Let K be the simplest cubic fields with conductors D = m2 +
3m + 9 = pq, where p < q are both primes and p is not cubic residue modulo
q or q is not cubic residue modulo p. If hK = 3 then we have

(i) D = pq = (s2u + 27)/4, where s is a prime and u = 1 or 3.

(ii) if a prime r splits in K, then r3 ≥ 2m + 3 and p2r ≥ 2m + 3.

Similarly we have the following theorem.

Theorem 2.8’ Let K be the simplest cubic fields with conductors D = m2 +
3m + 9 = 9p, where p is a prime. If hK = 3 then we have

(i) D = 9p = 9(s2 + 3)/4, where s is a prime.

(ii) if a prime r splits in K, then r3 ≥ 2m + 3 and 9r ≥ 2m + 3.

Remark. Theorem 2.8 (2.8’) is very similar to Theorem 1 (1’) in [5].

3 Determination of the simplest cubic fields

of class number 3

Let k be a cyclic cubic field with conductor D. Set l(s) = L(s, χ)L(s, χ) for
s ∈ C, where χ and χ are the nontrivial cubic Dirichlet characters modulo
(D) belonging to k. In [?]. Lettl have obtained a lower bound of l(1).
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Lemma 3.1 If k is a cyclic cubic field with conductor D, then l(1) > c6D
−c7,

for some constants c6, c7 > 0 as notations in [?].

From this lower bound, we have the following proposition.

Proposition 3.2 Let K be the simplest cubic fields with conductor D =
m2 + 3m + 9. If hK = 3 then D ≤ 25000.

Proof: First set m0 = 20000, µ = 10, ρ = 9.9 and α = 0.975 as notations
in [?]. Compute c6 and c7. Then we have

l(1) > 0.022D−0.054 if D > 20000.

Note that 4RK < (logD)2, where RK is the regulator of K ([?]). By Dirich-
let’s class number formular, we have

hk =
D · l(1)

4RK

>
0.022 ·D0.946

(logD)2
if D > 20000.

So if D > 25000 then hK ' 3.14 > 3. Thus we have proved the proposition.
2

With the help of a computer, we find that there are exactly 28 positive
integers smaller than 25000 which satisfy the necessary conditions in Theorem
2.8 or Theorem 2.8’: D= 63, 117, 217, 247, 279, 387, 427, 469, 559, 1899,
2169, 3199, 3789, 4039, 4167, 4699, 4837, 5707, 6169, 6649, 6979, 8197,
10107, 13579, 14527, 15507, 15757, 22959. Then, by checking tables of class
numbers of cyclic cubic fields [4, table 1 2 3 4] [8, table 3], we have the
following theorem.

Theorem 3.3 There are exactly nine simplest cubic fields of class number
3: their conductors D=63, 117, 217, 247, 279, 387, 427, 469, 559.
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