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Let m be a positive integer and fm(x) be a polynomial of the form
fm(x) = x2 + x − m. We call a polynomial fm(x) a Rabinowitsch
polynomial if for t = [

√
m] and consecutive integers x = x0, x0 +

1, · · · , x0 + t−1, |f(x)| is either 1 or prime. In this note, we show that
there are only finitely many Rabinowitsch polynomials fm(x) such
that 1 + 4m is square free.

1 Introduction

In [?], Rabinowitsch proved the following theorem.

Theorem(Rabinowitsch) The class number of the imaginary quadratic field
K = Q(

√
1− 4m), m ∈ N, is equal to 1 if and only if x2 − x + m is prime

for any integer x such that 1 ≤ x ≤ m− 2.
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In this paper, we shall consider an analogue of this for real quadratic
fields. Let m be a positive integer and fm(x) be a polynomial of the form
fm(x) = x2 +x−m. We call a polynomial fm(x) a Rabinowitsch polynomial
if for t = [

√
m] and consecutive integers x = x0, x0 + 1, · · · , x0 + t− 1, |f(x)|

is either 1 or prime. We shall prove the following theorems.

Theorem 1.1 Every Rabinowitsch polynomial of the form fm(x) = x2 +x−
m is one of the following types.

(i) x2 + x− 2,

(ii) x2 + x− t2, where t is 1 or a prime,

(iii) x2 + x− (t2 + t + n), where −t < n ≤ t and where |n| is 1 or |n|=2t+1
3

is an odd prime.

Theorem 1.2 If fm(x) = x2 +x−m is a Rabinowitsch polynomial such that
Km = Q(

√
1 + 4m) is a real quadratic field, then the class number of Km is

equal to 1.

Theorem 1.3 There are only finitely many Rabinowitsch polynomials fm(x) =
x2 + x−m such that 1 + 4m is square free.

Remark. Similar results to Theorem 1.2 can be found in [?] or [?].

2 Proof of Theorem 1.1

It is obvious that fm(x) is a Rabinowitsch polynomial for m = 1, 2, 4 (for
various choices of x0). In what follows we exclude these cases. Then m is
odd. For otherwise fm(x) = x2 + x−m is even for all integers x. Therefore
fm(x) = ±2 for all integers x in the interval [x0, x0 + t − 1] by definition of
fm(x). This forces that 2(x0 + 1) = f(x0 + 1)− f(x0) = ±4 and t = 2. But
this leads to m = 4.

Suppose that m = t2 is an (odd) square. Then t divides some integer
x ∈ [x0, x0 + t− 1]. It follows that t is a divisor of fm(x) = x2−x− t2 which,
by definition, must be ±1 or ± (prime). Thus t is 1 or a prime.

Suppose now that m is not a square. Write m = t2 + t + n for some
(unique) integer n with −t < n ≤ t. Since m is odd so is n. There is
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an integer x ∈ [x0, x0 + t − 1] such that n divides x − t. Then n divides
fm(x) = (x− t)(x + t + 1)− n. By definition of fm(x) this forces that either
|n| = 1 or |n| = |fm(x)| is an odd prime p. Assume the latter in what follows.

From fm(x) = n it follows that (x−t)(x+t+1) = 2n, which is impossible.
Thus fm(x) = −n and (x− t)(x + t + 1) = 0. We conclude that either x = t
or x = −t− 1 is the unique integer in the interval [x0, x0 + t− 1] satisfying
the congruence f(x) ≡ 0 (mod n). Both x = t and x = −t − 1 satisfy this
congruence, and if x satisfies it then also x± n. We infer that p = |n| must
be a divisor of 2t + 1 = t − (−t − 1) and that t−1

2
< p. Write p = 2t+1

k
.

Then k 6= 1 is an odd integer. For k ≥ 5 one obtains t < 7 and p < 3, a
contradiction. Thus k = 3 as desired. 2

Examples
(i) m = 2, t = 1, x0 = 0.
(ii) m = 169, t = 13, x0 = 1.
(iii)-1 m = 1, t = 1, n = −1, x0 = 0.
(iii)-2 m = 3, t = 1, n = 1, x0 = 0.
(iii)-3 m = 103, t = 10, n = −7, x0 = 4.
(iii)-4 m = 61, t = 7, n = 5, x0 = 4.

3 Proof of Theorem 1.2

Let fm(x) = x2 + x − m be a Rabinowitsch polynomials such that Km =
Q(
√

1 + 4m) is a real quadratic field. Let Dm denote the fundamental dis-
criminant and MDm denote the Minkowski constant of the real quadratic field

Km = Q(
√

1 + 4m), respectively. Then it is well known that MDm =
√

Dm

2

and the ideal class group of K is generated by prime ideals which lying over
primes l ≤ MDm . Thus to prove Theorem 1.2, it is enough to show that
(Dm

2
) = −1 and if (Dm

l
) = 0 or 1 for a prime 2 < l ≤ t = [

√
m], then (l)

should be a product of two principal prime ideals.
We may assume that m 6= 2, 4 (as K2 is not quadratic and K4 = Q(

√
17)

has class number 1). Then m is odd (see Proof of Theorem 1.1) and so
Dm ≡ 1 + 4m ≡ 5 (mod 8) (as 1 + 4m = u2Dm for some odd integer n).
Thus (Dm

2
) = −1.

Suppose now that (Dm

l
) = 0 or 1 for a prime 2 < l ≤ t. Then there exist
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an integer x ∈ [x0, x0 + t− 1] satisfying

(2x + 1)2 − (1 + 4m) ≡ 0 mod l.

By the definition of fm(x), it should be that

(2x + 1)2 − (1 + 4m) = 4(x2 + x−m) = ±4l.

Thus we have that

(l) = (
(2x + 1) +

√
1 + 4m

2
)(

(2x + 1)−√1 + 4m

2
)

which proves the theorem. 2

4 Proof of Theorem 1.3

We only give the details of the case of type (iii) in Theorem 1.1. The other
cases are trivial or similar to the case of type (iii).

Let fm(x) = x2 + x −m be a Rabinowitsch polynomial of type (iii) and
assume that 1 + 4m = (2t + 1)2 + 4n is square free. Then the real quadratic
field Km = Q(

√
Dm), Dm = (2t + 1)2 + 4n, is of so-called Richaud-Degert

type and its fundamental unit εm > 1 is well known (see [?]):

εm :=





(2t+1)+
√

(2t+1)2+4n

2
if |n| = 1

2(2t+1)2+4n
|4n| + 2(2t+1)

|4n|
√

(2t + 1)2 + 4n if |n| 6= 1.

The Siegel-Brauer theorem says that ln(R(Dm)h(Dm)) ∼ ln(
√

Dm) as
Dm →∞, where R(Dm)=lnεm is the regulator and h(Dm) is the class number
of Km. Thus Theorem 1.3 immediately follows from Theorem 1.2. 2

Remark. For the present, it seems to be difficult to extend Theorem 1.3 to
arbitrary 1 + 4m.
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