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Let D < 0 be the fundamental discriminant of a imaginary quadratic
field, and h(D) its class number. In this paper, we show that for any
prime p > 3 and e = —1,0, or 1,

#{—X <D <0]|h(D)#0 (mod p) and (?)_6} =P kjgyx'

1 Introduction and statement of results

Let p be a prime number. Let D < 0 be the fundamental discriminant of the
imaginary quadratic field Q(v/D) and h(D) its class number.

In [4], using Kronecker’s class number relation and some trace formulae
of Eichler and of Yamauchi combined with the p-adic Galois representaions
attached to the Jacobian varites of certain modular curves, Horie and Onishi
proved the following theorem.

Theorem (Horie and Onishi) Let e = —1,0, or 1. Then there exist infinitely
many fundamental discriminants D of imaginary quadratic fields such that

h(D)#0 (mod p) and (l;) =e.



Here (—) denotes as usual the kronecker symbol.

Recently Brunier [1] also proved this theorem by using an application of
the g-expansion principle of arithmetic algebraic geometry.

In this note, as the author’s previous work [2], refining Kohnen and Ono’s
method [3,5] which use Sturm’s result [6] on the congruence of modular forms,
we will give another proof of the above theorem and go a step further by
obtaing the following estimate.

Theorem 1.1 Let p > 3 be prime and e = —1,0, or 1. Then

H{—-X <D<0|h(D)Z0 (modp) and (l;) =€} >>

2 Proof of Theorem 1.1

Let 0(z) ==X, .7 g™ be the classical theta function, where ¢ = >, z € C.
Define r(n) by

Y r(n)g" :=0°(z) =14 6q + 12¢° + 8¢° + 6" + - - -
n=0

It is well known that

12H(4n) ifn=1,2 (mod 4)
24H(n) if n =3 (mod 8)

T =3 /1) ifn =0 (mod 4) (1)
0 if n =7 (mod 8),

where H(N) is the Hurwitz-Kronecker class number for a natural number
N =0,3 (mod 4). If =N = Df? where D is the fundamental discriminant of
an imaginary quadratic field Q(v/D), then H(N) is related to class number
of Q(v/D) by the formula
h(D) D
H(N)=—2=Z=%£ d)(— d 2
(V) = 255 S (/) ®

df

where w(D) is half the number of units in Q(v/D), o1(n) denotes the sum of
the positive divisors of n and u(d) is Mébius function.
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Case I: e = £1.

For k € 37Z and N € N (with 4|N if k € Z), let My(To(N), x) denote
the space of modular forms weight k on I'o(N) with Nebentypus character
X. Let xo denote the trivial character.

Define A,(z) € M%(FO(4p2)7XO) by

Ap(2) =0°(z) @ (;) = Z:O(;)T(n)qna
and A (z) € Ms(To(4p*), xo) by
Ap(z )+ €A, (z
o= HISG A = o

Let [ be an odd prime and define (U;|A5)(2), (Vi|45)(2) € M (Do (4p*l), (1))
in the usual way,

(U] A5) (= Zupz )q" = > r(n)q"

(2)=c
(VilA5)(z va, D= Y r(n".

If g =37 ,a(n)g™ has integer coefficients, then define ord;(g) by
ord;(g) := min{n |a(n) Z 0 (mod [)}.
Sturm [6] proved that if g € M(To(N), x) has integer coefficients and

ord;(g) > g[ro(l) : Do(IV)],

then g =0 (mod [).

Let r(p) := 3p3(p+1). For a positive integer n, let D,, be the fundamental
discriminant of the imaginary quadratic field Q(v/—n). Let Sf denote the
set of those D, with n < k(p) for which () =e.

If I is an odd prime such that (52) = —1 for all D,, € S§ and (%) =1,
then by (2), the multiplicative property for H(N), we have for all n < k(p)
with (2) =,

P
uy, (nl) = (I +2)v,,(nl).



Lemma 2.1 Letp > 3 be prime. Ifl is an odd prime such that | # —2 (mod
p) and (fo) =1, then

(UilA,)(2) = (L +2)(Vi|A})(2) # 0 (mod p).

Proof: For the case ¢ = 1, by (2) we easily see that u,,(I°) # (I +
2)v, (1) (mod p). For the case € = —1, we choose an integer 1 < s < p
such that (2) = —1. Let Dy be the fundamental discriminant of the imag-
inary quadratic field Q(v/—s). Then h(Dy) < p, i.e, h(Ds) Z 0 (mod p).
Thus by (2) we also easily see that u,;(sl*) # (I +2)v, [ (sl*) (mod p). O

From Sturm’s theorem [6], Lemma 2.1 and the relations (1) (2), we im-
mediately have the following proposition.

Proposition 2.2 Let p > 3 be prime and e = —1 or 1. Ifl is a sufficiently
large prime satisfying
. D, .
(7) (T) = —1 for all D, € S§,
(it) 1# =2 (modp),
[
(i) (=) =1,

p

then there is a negative fundamental discriminant D, := —d;l or —4d;l with
1 <d; < k(p)l such that

h(D;) 0 (mod p) and (l;l) =e.

Case II: ¢ = 0.
Define B,(z) € M%(Fo(4p2)7 Xo) by

B,(2) = (U,V,l0%)(2) = 3 r(pm)g™

n=0

and Bj(z) € M%(Fo(4p4),X0) by

By(2) = (GIV,IB,)(2) = 3 r(p*n)g™

n=0



and Cy(2) € My (Ta(4p") xo) by
G = Bys) = Ba(s) = 3 rom)a™

Let [ be an odd prime and define (U;|C,)(2), (VI|C,)(2) € M%(F0(4p4l), (4))
by

(UIC,)(z) = i@ugm)qnz S r(ipn)e™,

(n,p)=1
VICy)(2) = D vpu(m)g™ = - r(pn)g™".
n=0 (n,p)=1

Let k(p) := 3p*(p + 1) and S denote the set of negative fundamental

discriminants D, with np < s(p). If [ is an odd prime such that (2 ) = —1
for all Dy, € S?, then by (2), we have for all np < (p),

up(lpn) = (1 + 2)vy (Ipn).

By the similar way to Lemma 2.1 and Proposition 2.2, we have the fol-
lowing lemma and proposition.

Lemma 2.3 Letp > 3 be prime. If 1 is an odd prime such that | Z —2 (mod
p), then

(UiCp)(2) = (1 4+ 2)(Vi|Cy)(2) £ 0 (mod p).

Proposition 2.4 Let p > 3 be prime and ¢ = 0. If | is a sufficiently large
prime satisfying
) Dupy 1 I D SO
(7') (T)__ fOT’CL npe I’
(i) 1# -2 (modp),

then there is a negative fundamental discriminant Dy := —pd;l or —4pd;l with
1 < pd, < k(p)l such that

h(D;) 20 (mod p) and (l;l) =e.



Proof of Theorem 1.1. Let r, (mod t,) be an arithmetic progression with
(rp,tp) = 1 such that for every prime [ = r, (mod t,), { satisfies (i)(ii)(iii) in
Proposition 2.2 or (i)(ii) in Proposition 2.4. Then by the similar arguments as
in the proof of Corollary 1.2 in [2], which use Dirichlet’s theorem on primes
in arithmetic progression, Theorem 1.1 easily follows from Proposition 2.2

and Proposition 2.4. O
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