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Let D < 0 be the fundamental discriminant of a imaginary quadratic
field, and h(D) its class number. In this paper, we show that for any
prime p > 3 and ε = −1, 0, or 1,

]{−X < D < 0 | h(D) 6≡ 0 (mod p) and (
D

p
) = ε} >>p

√
X

log X
.

1 Introduction and statement of results

Let p be a prime number. Let D < 0 be the fundamental discriminant of the
imaginary quadratic field Q(

√
D) and h(D) its class number.

In [4], using Kronecker’s class number relation and some trace formulae
of Eichler and of Yamauchi combined with the p-adic Galois representaions
attached to the Jacobian varites of certain modular curves, Horie and Ônishi
proved the following theorem.

Theorem (Horie and Ônishi) Let ε = −1, 0, or 1. Then there exist infinitely
many fundamental discriminants D of imaginary quadratic fields such that

h(D) 6≡ 0 (mod p) and (
D

p
) = ε.
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Here (−) denotes as usual the kronecker symbol.

Recently Brunier [1] also proved this theorem by using an application of
the q-expansion principle of arithmetic algebraic geometry.

In this note, as the author’s previous work [2], refining Kohnen and Ono’s
method [3,5] which use Sturm’s result [6] on the congruence of modular forms,
we will give another proof of the above theorem and go a step further by
obtaing the following estimate.

Theorem 1.1 Let p > 3 be prime and ε = −1, 0, or 1. Then

]{−X < D < 0 | h(D) 6≡ 0 (mod p) and (
D

p
) = ε} >>p

√
X

log X
.

2 Proof of Theorem 1.1

Let θ(z) :=
∑

n∈Z qn2
be the classical theta function, where q = e2πiz, z ∈ C.

Define r(n) by

∞∑

n=0

r(n)qn := θ3(z) = 1 + 6q + 12q2 + 8q3 + 6q4 + · · · .

It is well known that

r(n) =





12H(4n) if n ≡ 1, 2 (mod 4)
24H(n) if n ≡ 3 (mod 8)
r(n/4) if n ≡ 0 (mod 4)
0 if n ≡ 7 (mod 8),

(1)

where H(N) is the Hurwitz-Kronecker class number for a natural number
N ≡ 0, 3 (mod 4). If −N = Df 2 where D is the fundamental discriminant of
an imaginary quadratic field Q(

√
D), then H(N) is related to class number

of Q(
√

D) by the formula

H(N) =
h(D)

ω(D)

∑

d|f
µ(d)(

D

d
)σ1(f/d), (2)

where ω(D) is half the number of units in Q(
√

D), σ1(n) denotes the sum of
the positive divisors of n and µ(d) is Möbius function.
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Case I: ε = ±1.
For k ∈ 1

2
Z and N ∈ N (with 4|N if k 6∈ Z), let Mk(Γ0(N), χ) denote

the space of modular forms weight k on Γ0(N) with Nebentypus character
χ. Let χ0 denote the trivial character.

Define Ap(z) ∈ M 3
2
(Γ0(4p

2), χ0) by

Ap(z) := θ3(z)⊗ (
·
p
) =

∞∑

n=0

(
n

p
)r(n)qn,

and Aε
p(z) ∈ M 3

2
(Γ0(4p

4), χ0) by

Aε
p(z) :=

Ap(z)⊗ ( ·
p
) + εAp(z)

2
=

∑

(n
p
)=ε

r(n)qn.

Let l be an odd prime and define (Ul|Aε
p)(z), (Vl|Aε

p)(z) ∈ M 3
2
(Γ0(4p

4l), (4l
· ))

in the usual way,

(Ul|Aε
p)(z) :=

∞∑

n=0

uε
p,l(n)qn =

∑

(n
p
)=ε

r(ln)qn,

(Vl|Aε
p)(z) :=

∞∑

n=0

vε
p,l(n)qn =

∑

(n
p
)=ε

r(n)qln.

If g =
∑∞

n=0 a(n)qn has integer coefficients, then define ordl(g) by

ordl(g) := min{n | a(n) 6≡ 0 (mod l)}.
Sturm [6] proved that if g ∈ Mk(Γ0(N), χ) has integer coefficients and

ordl(g) >
k

12
[Γ0(1) : Γ0(N)],

then g ≡ 0 (mod l).
Let κ(p) := 3p3(p+1). For a positive integer n, let Dn be the fundamental

discriminant of the imaginary quadratic field Q(
√−n). Let Sε

p denote the
set of those Dn with n ≤ κ(p) for which (n

p
) = ε.

If l is an odd prime such that (Dn

l
) = −1 for all Dn ∈ Sε

p and ( l
p
) = 1,

then by (2), the multiplicative property for H(N), we have for all n ≤ κ(p)
with (n

p
) = ε,

uε
p,l(nl) = (l + 2)vε

p,l(nl).
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Lemma 2.1 Let p > 3 be prime. If l is an odd prime such that l 6≡ −2 (mod
p) and ( l

p
) = 1, then

(Ul|Aε
p)(z)− (l + 2)(Vl|Aε

p)(z) 6≡ 0 (mod p).

Proof: For the case ε = 1, by (2) we easily see that u1
p,l(l

3) 6≡ (l +
2)v1

p,l(l
3) (mod p). For the case ε = −1, we choose an integer 1 < s < p

such that ( s
p
) = −1. Let Ds be the fundamental discriminant of the imag-

inary quadratic field Q(
√−s). Then h(Ds) < p, i.e, h(Ds) 6≡ 0 (mod p).

Thus by (2) we also easily see that u−1
p,l (sl

3) 6≡ (l + 2)v−1
p,l (sl

3) (mod p). 2

From Sturm’s theorem [6], Lemma 2.1 and the relations (1) (2), we im-
mediately have the following proposition.

Proposition 2.2 Let p > 3 be prime and ε = −1 or 1. If l is a sufficiently
large prime satisfying

(i) (
Dn

l
) = −1 for all Dn ∈ Sε

p,

(ii) l 6≡ −2 (mod p),

(iii) (
l

p
) = 1,

then there is a negative fundamental discriminant Dl := −dll or −4dll with
1 ≤ dl ≤ κ(p)l such that

h(Dl) 6≡ 0 (mod p) and (
Dl

p
) = ε.

Case II: ε = 0.
Define Bp(z) ∈ M 3

2
(Γ0(4p

2), χ0) by

Bp(z) := (Up|Vp|θ3)(z) =
∞∑

n=0

r(pn)qpn,

and Bp2(z) ∈ M 3
2
(Γ0(4p

4), χ0) by

Bp2(z) := (Up|Vp|Bp)(z) =
∞∑

n=0

r(p2n)qp2n,
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and Cp(z) ∈ M 3
2
(Γ0(4p

4), χ0) by

Cp(z) := Bp(z)−Bp2(z) =
∑

(n,p)=1

r(pn)qpn.

Let l be an odd prime and define (Ul|Cp)(z), (Vl|Cp)(z) ∈ M 3
2
(Γ0(4p

4l), (4l
· ))

by

(Ul|Cp)(z) :=
∞∑

n=0

u0
p,l(n)qn =

∑

(n,p)=1

r(lpn)qpn,

(Vl|Cp)(z) :=
∞∑

n=0

v0
p,l(n)qn =

∑

(n,p)=1

r(pn)qlpn.

Let κ(p) := 3p3(p + 1) and S0
p denote the set of negative fundamental

discriminants Dnp with np ≤ κ(p). If l is an odd prime such that (Dnp

l
) = −1

for all Dnp ∈ S0
p , then by (2), we have for all np ≤ κ(p),

u0
p,l(lpn) = (l + 2)v0

p,l(lpn).

By the similar way to Lemma 2.1 and Proposition 2.2, we have the fol-
lowing lemma and proposition.

Lemma 2.3 Let p > 3 be prime. If l is an odd prime such that l 6≡ −2 (mod
p), then

(Ul|Cp)(z)− (l + 2)(Vl|Cp)(z) 6≡ 0 (mod p).

Proposition 2.4 Let p > 3 be prime and ε = 0. If l is a sufficiently large
prime satisfying

(i) (
Dnp

l
) = −1 for all Dnp ∈ S0

p ,

(ii) l 6≡ −2 (mod p),

then there is a negative fundamental discriminant Dl := −pdll or −4pdll with
1 ≤ pdl ≤ κ(p)l such that

h(Dl) 6≡ 0 (mod p) and (
Dl

p
) = ε.
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Proof of Theorem 1.1. Let rp (mod tp) be an arithmetic progression with
(rp, tp) = 1 such that for every prime l ≡ rp (mod tp), l satisfies (i)(ii)(iii) in
Proposition 2.2 or (i)(ii) in Proposition 2.4. Then by the similar arguments as
in the proof of Corollary 1.2 in [2], which use Dirichlet’s theorem on primes
in arithmetic progression, Theorem 1.1 easily follows from Proposition 2.2
and Proposition 2.4. 2
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