Existence of certain fundamental discriminants and class numbers of real quadratic fields

Dongho Byeon

School of Mathematical Sciences, Seoul National University, Seoul, Korea e-mail: dhbyeon@math.snu.ac.kr

1 Introduction and statement of results

Let D be the fundamental discriminant of the quadratic field $\mathbb{Q}(\sqrt{D})$, h(D) its class number, and $\chi_D := (\frac{D}{\cdot})$ the usual Kronecker character. Let p be prime, \mathbb{Z}_p the ring of p-adic integers, and $\lambda_p(\mathbb{Q}(\sqrt{D}))$ the Iwasawa λ -invariant of the cyclotomic \mathbb{Z}_p -extension of $\mathbb{Q}(\sqrt{D})$. Let $R_p(D)$ denote the p-adic regulator of $\mathbb{Q}(\sqrt{D})$, and $|\cdot|_p$ denote the usual multiplicative p-adic valuation normalized so that $|p|_p = \frac{1}{p}$.

In [9], by applying Sturm's theorem on the congruence of modular forms to Cohen's half integral weight modular forms, Ono proved the following theorem.

Theorem(Ono) Let p > 3 be prime. If there is a fundamental discriminant D_0 coprime to p for which

$$(i) \quad (-1)^{\frac{p-1}{2}} D_0 > 0,$$

(ii)
$$|B(\frac{p-1}{2}, \chi_{D_0})|_p = 1,$$

where $B(\frac{p-1}{2}, \chi_{D_0})$ is the $\frac{p-1}{2}$ st generalized Bernoulli number with character χ_{D_0} , then

$$\sharp \{0 < D < X \mid h(D) \not\equiv 0 \pmod{p}, \ \chi_D(p) = 0, \ and \ |\frac{R_p(D)}{\sqrt{D}}|_p = 1\} >>_p \frac{\sqrt{X}}{\log X}.$$

One also checked that conditions (i) and (ii) holds for all primes 3 using MAPLE.

In this note, we shall prove the conditions (i) and (ii) in the above theorem holds for any prime p > 3 and obtain the following theorem.

Theorem 1.1 Let p > 3 be prime.

- (a) If $p \equiv 1 \pmod{4}$, then the fundamental discriminant $D_0 > 0$ of the real quadratic field $\mathbb{Q}(\sqrt{p-2})$ satisfies the conditions (i) and (ii).
- (b) If $p \equiv 3 \pmod{4}$, then the fundamental discriminant $D_0 < 0$ of the imaginary quadratic field $\mathbb{Q}(\sqrt{-(p-4)})$ satisfies the conditions (i) and (ii).

From the above Ono's theorem and Theorem 1.1, we immediately have the following corollary.

Corollary 1.2 Let p > 3 be prime. Then

$$\sharp \{0 < D < X \mid h(D) \not\equiv 0 \pmod{p}, \ \chi_D(p) = 0, \ and \ |\frac{R_p(D)}{\sqrt{D}}|_p = 1\} >>_p \frac{\sqrt{X}}{\log X}.$$

From a theorem of Iwasawa [7] and Corollary 1.2, we also immediately have the following corollary.

Corollary 1.3 Let p > 3 be prime. Then

$$\sharp \{0 < D < X \mid \lambda_p(\mathbb{Q}(\sqrt{D})) = 0, \ \chi_D(p) = 0\} >>_p \frac{\sqrt{X}}{\log X}.$$

Remark 1. In [2], by refining Ono's method and using similar method to this note, the author proved the following theorem and corollary.

Theorem Let p > 3 be prime and $\delta = -1$ or 1. If $\delta = -1$, then for any $p \equiv 3 \pmod{4}$, and if $\delta = 1$, then for any p,

$$\sharp \{0 < D < X \mid h(D) \not\equiv 0 \pmod{p}, \ \chi_D(p) = \delta, \ and \ |R_p(D)|_p = \frac{1}{p} \} >>_p \frac{\sqrt{X}}{\log X}.$$

Corollary Let p > 3 be prime and $\delta = -1$ or 1. If $\delta = -1$, then for any $p \equiv 3 \pmod{4}$, and if $\delta = 1$, then for any p,

$$\sharp \{0 < D < X \mid \lambda_p(\mathbb{Q}(\sqrt{D})) = 0, \ \chi_D(p) = \delta\} >>_p \frac{\sqrt{X}}{\log X}.$$

However, the case of $\delta = -1$ and $p \equiv 1 \pmod{4}$ is a remaining problem.

Remark 2. Similar works for imaginary quadratic fields can be found in [1], [3], [4], [5], [8], [10].

2 Proof of Theorem 1.1

Let p > 3 be prime and $D_p := (-1)^{\frac{p-1}{2}} pD$. In the proof of Proposition 2 in [9], by using the construction of Kubota-Leopoldt p-adic L-function, the Kummer congruences, and the p-adic class number formular, Ono proved that

$$-\frac{2B(\frac{p-1}{2},\chi_D)}{p-1} \equiv \frac{2h(D_p)R_p(D_p)}{\sqrt{D_p}} \pmod{p}.$$

Note that D_0 clearly satisfies the condition (i) in the above Ono's Theorem. Therefore, to prove Theorem 1.1, it is enough to show that $\left|\frac{h(D_{0p})R_p(D_{0p})}{\sqrt{D_{0p}}}\right|_p = 1$, that is,

$$(1) \quad h(D_{0p}) \not\equiv 0 \pmod{p},$$

(2)
$$\left| \frac{R_p(D_{0p})}{\sqrt{D_{0p}}} \right|_p = 1.$$

Proof of (1). Let D > 0 be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{D})$ and $L(s,\chi_D)$ be the Dirichlet L-function with character χ_D . L. K. Hua [6, Theorem 13.3, p.328] obtained the following upper bound for $L(1,\chi_D)$;

$$L(1,\chi_D) < \frac{\log D}{2} + 1.$$

Dirichlet's class number formula says that

$$h(D) = \frac{\sqrt{D}L(1, \chi_D)}{2\log \epsilon_D},$$

where $\epsilon_D > 1$ is the fundamental unit of $\mathbb{Q}(\sqrt{D})$.

Thus, by the above Hua's upper bound for $L(1,\chi_D)$, we have that

$$h(D) < \sqrt{D} \cdot \frac{(2 + \log \sqrt{D})}{4 \log \epsilon_D} < \sqrt{D} \cdot \frac{(2 + \log \sqrt{D})}{2 \log(D/4)},$$

because $\epsilon_D > \sqrt{D}/2$.

Since D_{0p} is the fundamental discriminant of the real quadratic fields $\mathbb{Q}(\sqrt{p(p-2)})$ or $\mathbb{Q}(\sqrt{p(p-4)})$, we have

$$h(D_{0p}) < p$$

and we proved that $h(D_{0p}) \not\equiv 0 \pmod{p}$.

Proof of (2). Let D > 0 be the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{D})$ and $\epsilon_D > 1$ its fundamental unit. Then $R_p(D) = \log_p(\epsilon_D)$. Let p > 3 be prime and \mathbf{p} a prime ideal of $\mathbb{Q}(\sqrt{D})$ over p. Let n(p, D) be a non negative integer satisfying that

$$\mathbf{p}^{n(p,D)} \mid (\epsilon_D^{N(\mathbf{p})-1} - 1)$$
 but $\mathbf{p}^{n(p,D)+1} \not\mid (\epsilon_D^{N(\mathbf{p})-1} - 1)$,

where N is the absolute norm of $\mathbb{Q}(\sqrt{D})$. Note that $n(p, D) \geq 1$. Since $|\epsilon_D^{N(\mathbf{p})-1} - 1|_p = |\log_p(\epsilon_D^{N(\mathbf{p})-1})|_p$, we have that

$$|R_p(D)|_p = \begin{cases} p^{-n(p,D)} & \text{if } p \text{ is unramified,} \\ p^{-n(p,D)/2} & \text{if } p \text{ is ramified.} \end{cases}$$

Since D_{0p} is the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{p(p-2)})$ or $\mathbb{Q}(\sqrt{p(p-4)})$, we have $|\sqrt{D_{0p}}|_p = p^{-\frac{1}{2}}$. Thus, from the above argument, to prove (2), it is enough to show that

$$n(p, D_{0p}) = 1.$$

First we consider the case $p \equiv 1 \pmod{4}$ and D_{0p} is the fundamental discriminant of the real quadratic field $\mathbb{Q}(\sqrt{p(p-2)})$. Let $\epsilon_{D_{0p}} > 1$ be the fundamental unit of $\mathbb{Q}(\sqrt{p(p-2)})$ and $\alpha := (p-1) + \sqrt{p(p-2)}$. Since $N_{\mathbb{Q}(\sqrt{D_{0p}})/\mathbb{Q}}(\alpha) = 1$ and $\alpha > 1$, $\alpha = \epsilon_{D_{0p}}^{j}$ for some positive integer j.

Let **p** be a prime ideal of $\mathbb{Q}(\sqrt{D_{0p}})$ over p, i.e, $p = \mathbf{p}^2$. Then, by easy computation, we have

$$\begin{array}{lcl} \epsilon_{D_{0p}}^{2j} - 1 & = & \alpha^2 - 1 = ((p-1) + \sqrt{p(p-2)})^2 - 1 \equiv 0 \pmod{\mathbf{p}} \\ \epsilon_{D_{0p}}^{2j} - 1 & = & \alpha^2 - 1 = ((p-1) + \sqrt{p(p-2)})^2 - 1 \not\equiv 0 \pmod{\mathbf{p}^2 = p}. \end{array}$$

Now we claim that

$$\epsilon_{D_{0p}}^{N(\mathbf{p})-1} - 1 = \epsilon_{D_{0p}}^{p-1} - 1 \not\equiv 0 \pmod{\mathbf{p}^2}.$$

Suppose that $\epsilon_{D_{0p}}^{p-1} - 1 \equiv 0 \pmod{\mathbf{p}^2}$. Since $\epsilon_{D_{0p}}^{2j} - 1 \equiv 0 \pmod{\mathbf{p}}$, we have 2j|(p-1) or (p-1)|2j. If (p-1)|2j, then clearly $\epsilon_{D_{0p}}^{2j} - 1 \equiv 0 \pmod{\mathbf{p}^2}$ and we have a contradiction. If 2j|(p-1), write $p-1=m\cdot 2j$ and

$$\epsilon_{D_{0p}}^{p-1} - 1 = (\epsilon_{D_{0p}}^{2j} - 1)((\epsilon_{D_{0p}}^{2j})^{m-1} + \dots + 1).$$

Since $\epsilon_{D_{0p}}^{p-1} - 1 \equiv 0 \pmod{\mathbf{p}^2}$ and $(\epsilon_{D_{0p}}^{2j})^{m-1} + \cdots + 1 \equiv m \not\equiv 0 \pmod{\mathbf{p}}$, we also have $\epsilon_{D_{0p}}^{2j} - 1 \equiv 0 \pmod{\mathbf{p}^2}$ and a contradiction. Thus we showed the claim and proved $n(p, D_{0p}) = 1$.

Finally we consider the case $p \equiv 3 \pmod{4}$ and D_{0p} is the fundamental discriminant of $\mathbb{Q}(\sqrt{p(p-4)})$. In this case, if we let $\alpha := \frac{p-2}{2} + \frac{\sqrt{p(p-4)}}{2}$, then by the same method, we can also prove $n(p, D_{0p}) = 1$.

Remark 3. A careful analysis of the proof of Theorem 2 in [9] produces a much more explicit result than Corollary 1.2 as follows:

If p > 3 is a prime and $\epsilon > 0$, for all sufficiently large X > 0,

$$\sharp \{0 < D < X \mid h(D) \not\equiv 0 \pmod{p}, \chi_D(p) = 0, and |\frac{R_p(D)}{\sqrt{D}}|_p = 1\} \ge (c(p) - \epsilon) \frac{\sqrt{X}}{\log X}$$

with $c(p) = 1/(2^{(\pi(\kappa(p))-1)} \cdot \sqrt{\kappa(p)p})$, where $\pi(x)$ is the number of primes not exceeding x and $\kappa(p) := p^2Q^3(p+1)(Q+1)/4$ in the proof of Theorem 2 in [9].

From this and our exact choice of D_0 in Theorem 1.1, we can obtain

$$c(p) \ge 1/(2^{(\pi(p^7/4)-2)} \cdot p^4),$$

since Q < p-2 if $p \equiv 1 \pmod{4}$ and Q < p-4 if $p \equiv 3 \pmod{4}$ except p = 5 or 7. When p = 5, let Q = 7 and when p = 7, let Q = 5. Then we have $c(5) \geq 1/(2^{9846} \cdot 35 \cdot \sqrt{105})$ and $c(7) \geq 1/(2^{7257} \cdot 35 \cdot \sqrt{105})$.

Acknowledgments. The author would like to thank Professor Hendrik Lenstra for finding a mistake in this manuscript. The author would also like to thank the referee for many helpful suggestions.

References

- D. Byeon, A note on the basic Iwasawa λ-invariants of imaginary quadratic fields and congruence of modular forms, Acta Arith. 89 (1999), 295–299.
- [2] D. Byeon, Indivisibility of class numbers and Iwasawa λ-invarinats of real quadratic fields, Compositio Math., 126 (2001), 249-256.
- [3] P. Hartung, Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory 6 (1974), 276–278.
- [4] K. Horie, A note on basic Iwasawa λ-invariants of imaginary quadratic fields, Invent. Math. 88 (1987), 31–38.
- [5] K. Horie and Y. Onishi, The existence of certain infinite families of imaginary quadratic fields, J. Reine und ange. Math. 390 (1988), 97– 113.
- [6] L. -K. Hua, Introduction to number theory, Springer-Verlag, Berlin-New York, 1982.

- [7] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg **20** (1956), 257–258.
- [8] W. Kohnen and K. Ono, Indivisibility of class numbers of imaginary quadratic fields and orders of Tate-Shafarevich groups of elliptic curves with complex multiplication, Invent. Math. 135 (1999), 387–398.
- [9] K. Ono, Indivisibility of class numbers of real quadratic fields, Compositio Math. 119 (1999), 1–11.
- [10] K. Ono and C. Skinner, Fourier coefficients of half-integral weight modular forms modulo l, Ann. Math. 147 (1998), 453–470.