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1 Introduction and statement of results

Let D be the fundamental discriminant of the quadratic field Q(v/D), h(D)
its class number, and yp := (2) the usual Kronecker character. Let p be
prime, Z, the ring of p-adic integers, and \,(Q(v/D)) the Iwasawa A-invariant
of the cyclotomic Z,-extension of Q(v/D). Let R,(D) denote the p-adic
regulator of Q(v/D), and ||, denote the usual multiplicative p-adic valuation
normalized so that [p|, = %.

In [9], by applying Sturm’s theorem on the congruence of modular forms
to Cohen’s half integral weight modular forms, Ono proved the following
theorem.

Theorem(Ono) Let p > 3 be prime. If there is a fundamental discriminant
Dy coprime to p for which

(i) (=1)"7 Dy >0,
p—1

(i) 1B xon)l = 1

where B(%, XD,) 1S the %st generalized Bernoulli number with character
XDy, then

Ry(D) VX

{0 < D < X | h(D) #0 (mod p), xp(p) =0, and | /D =1} >>, Tog X




Ono also checked that conditions (i) and (ii) holds for all primes 3 < p <
5000 using MAPLE.

In this note, we shall prove the conditions (i) and (ii) in the above theorem
holds for any prime p > 3 and obtain the following theorem.

Theorem 1.1 Let p > 3 be prime.
(a) If p =1 (mod 4), then the fundamental discriminant Dy > 0 of the real

quadratic field Q(\/p — 2) satisfies the conditions (i) and (ii).
(b) If p = 3 (mod 4), then the fundamental discriminant Dy < 0 of the

imaginary quadratic field Q(/—(p — 4)) satisfies the conditions (i) and (ii).

From the above Ono’s theorem and Theorem 1.1, we immediately have
the following corollary.

Corollary 1.2 Let p > 3 be prime. Then

R,(D) VX
D

H{0< D < X | (D) #0 (mod p), xp(p) =0, and | /D =1} >>, Tog X

From a theorem of Iwasawa [7] and Corollary 1.2, we also immediately
have the following corollary.

Corollary 1.3 Let p > 3 be prime. Then

VX

H{0 < D < X | A(Q(VD)) =0, xp(p) =0} >>, log X'

Remark 1. In [2], by refining Ono’s method and using similar method to
this note, the author proved the following theorem and corollary.

Theorem Let p > 3 be prime and 6 = —1 or 1. If § = —1, then for any
p=3 (mod 4), and if § = 1, then for any p,

X
#{0<D < X | (D) #0 (mod p), xp(p) =36, and|R,(D)l, = ]19} >>p 1(\,{5«—)('



Corollary Let p > 3 be prime and 6 = —1 or 1. If 6 = —1, then for any
p=3 (mod 4), and if 6 = 1, then for any p,

VX

{0 < D < X | M(Q(VD)) =0, xp(p) =6} >>, log X'

However, the case of 6 = —1 and p = 1 (mod 4) is a remaining problem.

Remark 2. Similar works for imaginary quadratic fields can be found in [1],
31, 4], [3], 18], [10].

2 Proof of Theorem 1.1

Let p > 3 be prime and D, := (—1)%pD. In the proof of Proposition 2
in [9], by using the construction of Kubota-Leopoldt p-adic L-function, the
Kummer congruences, and the p-adic class number formular, Ono proved

that —1
2B xp) _ 2UDYRADy)

r=1 /b,

Note that Dy clearly satisfies the condition (i) in the above Ono’s Theorem.

Therefore, to prove Theorem 1.1, it is enough to show that |MIEAD%)|Z’ =

1, that is,

(1) h(Dop) #0 (mod p),
Rp(D0p>

(2) | /Doy v

Proof of (1). Let D > 0 be the fundamental discriminant of the real quadratic
field Q(v/D) and L(s,xp) be the Dirichlet L-function with character yp.
L. K. Hua [6, Theorem 13.3, p.328] obtained the following upper bound for

L(1,xp);

log D

L(LXD) < + 1.




Dirichlet’s class number formula says that

QIOgED ’

where ep > 1 is the fundamental unit of Q(v/D).
Thus, by the above Hua’s upper bound for L(1, xp), we have that

(2 +log /D) (2 +log /D)
h(D)<@-W<\/ﬁ-Wa

because ep > /D /2.
Since Dy, is the fundamental discriminant of the real quadratic fields

Q(y/p(p —2)) or Q(y/p(p —4)), we have
h(Dop) <p
and we proved that h(Dg,) # 0 (mod p).

Proof of (2). Let D > 0 be the fundamental discriminant of the real quadratic
field Q(v/D) and ep > 1 its fundamental unit. Then R,(D) = log,(ep). Let

p > 3 be prime and p a prime ideal of Q(v/D) over p. Let n(p, D) be a non
negative integer satisfying that

PPN (T = 1) but pr Py (P 1),

where N is the absolute norm of Q(v/D). Note that n(p, D) > 1. Since

ep™' ™" =1l = llog, (€™ )|y, we have that
(D) if p i ified
. p 1I p 1S unramimned,
|Ry(D)l, = { p~ D)2 if p is ramified.

Since Dy, is the fundamental discriminant of the real quadratic field

Q(y/p(p —2)) or Q(y/p(p —4)), we have |/Do,|, = p~2. Thus, from the
above argument, to prove (2), it is enough to show that

n(p, Dop) = 1.



First we consider the case p = 1 (mod 4) and D, is the fundamental
discriminant of the real quadratic field Q(y/p(p —2)). Let ep,, > 1 be the
fundamental unit of Q(y/p(p —2)) and o = (p — 1) + /p(p —2). Since
N@(\/D—%)/Q(a) =landa>1,a= e%op for some positive integer j.

Let p be a prime ideal of Q(y/Dy,) over p, i.e, p = p*. Then, by easy
computation, we have

€y —1 = &> =1=((p=1)+/p(p—2))’~1=0 (mod p)

p,—1 = o> =1=((p—1)+/p(p—2)*~1#0 (mod p* = p).

Now we claim that
N(p)—1 _
eDéf) —-1= e%oi —1#0 (mod p?).

Suppose that e%_oi —1 =0 (mod p?). Since €2Dj0p —1 = 0 (mod p), we
have 2j|(p — 1) or (p — 1)|2j. If (p — 1)|27, then clearly eQD]Op —1=0 (mod
p?) and we have a contradiction. If 2j|(p — 1), write p — 1 = m - 2j and

—1 27 27 m—
el 1= (e —1)(€4 ) 4 1),

Since e%_oi —1 =0 (mod p?) and (e%jop)m_l +---+1=m#0 (mod p),
we also have e%op — 1 =0 (mod p?) and a contradiction. Thus we showed
the claim and proved n(p, Dy,) = 1.

Finally we consider the case p = 3 (mod 4) and Dy, is the fundamental
discriminant of Q(y/p(p — 4)). In this case, if we let o := 252 4 p(prA‘), then
by the same method, we can also prove n(p, Dg,) = 1.

Remark 3. A careful analysis of the proof of Theorem 2 in [9] produces a
much more explicit result than Corollary 1.2 as follows:

If p > 3 1s a prime and € > 0, for all sufficiently large X > 0,

R,(D) VX

10 < D < X[h(D) # 0(mod p), xp(p) = 0, and]| /D =1} > (C(P)—e)logX




with c¢(p) = 1/(2EEN=1 .\ [k (p)p), where 7(x) is the number of primes not
exceeding x and r(p) = p*Q*(p + 1)(Q + 1)/4 in the proof of Theorem 2 in

[9].
From this and our exact choice of Dy in Theorem 1.1, we can obtain
c(p) = 1/(27FODph),

since @ < p—2if p=1 (mod 4) and Q < p—4 if p = 3 (mod 4) except
=5or 7. When p =5, let @ =7 and when p = 7, let Q = 5. Then we
have ¢(5) > 1/(2%% . 35 . \/105) and c(7) > 1/(27257 . 35 . /105).
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