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1 Introduction and statement of results

Let D be the fundamental discriminant of the quadratic field Q(
√

D), h(D)
its class number, and χD := (D

· ) the usual Kronecker character. Let p be

prime, Zp the ring of p-adic integers, and λp(Q(
√

D)) the Iwasawa λ-invariant
of the cyclotomic Zp-extension of Q(

√
D). Let Rp(D) denote the p-adic

regulator of Q(
√

D), and | · |p denote the usual multiplicative p-adic valuation
normalized so that |p|p = 1

p
.

In [9], by applying Sturm’s theorem on the congruence of modular forms
to Cohen’s half integral weight modular forms, Ono proved the following
theorem.

Theorem(Ono) Let p > 3 be prime. If there is a fundamental discriminant
D0 coprime to p for which

(i) (−1)
p−1
2 D0 > 0,

(ii) |B(
p− 1

2
, χD0)|p = 1,

where B(p−1
2

, χD0) is the p−1
2

st generalized Bernoulli number with character
χD0, then

]{0 < D < X | h(D) 6≡ 0 (mod p), χD(p) = 0, and |Rp(D)√
D

|p = 1} >>p

√
X

log X
.
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Ono also checked that conditions (i) and (ii) holds for all primes 3 < p <
5000 using MAPLE.

In this note, we shall prove the conditions (i) and (ii) in the above theorem
holds for any prime p > 3 and obtain the following theorem.

Theorem 1.1 Let p > 3 be prime.
(a) If p ≡ 1 (mod 4), then the fundamental discriminant D0 > 0 of the real
quadratic field Q(

√
p− 2) satisfies the conditions (i) and (ii).

(b) If p ≡ 3 (mod 4), then the fundamental discriminant D0 < 0 of the

imaginary quadratic field Q(
√
−(p− 4)) satisfies the conditions (i) and (ii).

From the above Ono’s theorem and Theorem 1.1, we immediately have
the following corollary.

Corollary 1.2 Let p > 3 be prime. Then

]{0 < D < X | h(D) 6≡ 0 (mod p), χD(p) = 0, and |Rp(D)√
D

|p = 1} >>p

√
X

log X
.

From a theorem of Iwasawa [7] and Corollary 1.2, we also immediately
have the following corollary.

Corollary 1.3 Let p > 3 be prime. Then

]{0 < D < X | λp(Q(
√

D)) = 0, χD(p) = 0} >>p

√
X

log X
.

Remark 1. In [2], by refining Ono’s method and using similar method to
this note, the author proved the following theorem and corollary.

Theorem Let p > 3 be prime and δ = −1 or 1. If δ = −1, then for any
p ≡ 3 (mod 4), and if δ = 1, then for any p,

]{0 < D < X | h(D) 6≡ 0 (mod p), χD(p) = δ, and |Rp(D)|p =
1

p
} >>p

√
X

log X
.
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Corollary Let p > 3 be prime and δ = −1 or 1. If δ = −1, then for any
p ≡ 3 (mod 4), and if δ = 1, then for any p,

]{0 < D < X | λp(Q(
√

D)) = 0, χD(p) = δ} >>p

√
X

log X
.

However, the case of δ = −1 and p ≡ 1 (mod 4) is a remaining problem.

Remark 2. Similar works for imaginary quadratic fields can be found in [1],
[3], [4], [5], [8], [10].

2 Proof of Theorem 1.1

Let p > 3 be prime and Dp := (−1)
p−1
2 pD. In the proof of Proposition 2

in [9], by using the construction of Kubota-Leopoldt p-adic L-function, the
Kummer congruences, and the p-adic class number formular, Ono proved
that

−2B(p−1
2

, χD)

p− 1
≡ 2h(Dp)Rp(Dp)√

Dp

(mod p).

Note that D0 clearly satisfies the condition (i) in the above Ono’s Theorem.

Therefore, to prove Theorem 1.1, it is enough to show that |h(D0p)Rp(D0p)√
D0p

|p =

1, that is,

(1) h(D0p) 6≡ 0 (mod p),

(2) |Rp(D0p)√
D0p

|p = 1.

Proof of (1). Let D > 0 be the fundamental discriminant of the real quadratic
field Q(

√
D) and L(s, χD) be the Dirichlet L-function with character χD.

L. K. Hua [6, Theorem 13.3, p.328] obtained the following upper bound for
L(1, χD);

L(1, χD) <
log D

2
+ 1.
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Dirichlet’s class number formula says that

h(D) =

√
DL(1, χD)

2 log εD

,

where εD > 1 is the fundamental unit of Q(
√

D).
Thus, by the above Hua’s upper bound for L(1, χD), we have that

h(D) <
√

D · (2 + log
√

D)

4 log εD

<
√

D · (2 + log
√

D)

2 log(D/4)
,

because εD >
√

D/2.
Since D0p is the fundamental discriminant of the real quadratic fields

Q(
√

p(p− 2)) or Q(
√

p(p− 4)), we have

h(D0p) < p

and we proved that h(D0p) 6≡ 0 (mod p).

Proof of (2). Let D > 0 be the fundamental discriminant of the real quadratic
field Q(

√
D) and εD > 1 its fundamental unit. Then Rp(D) = logp(εD). Let

p > 3 be prime and p a prime ideal of Q(
√

D) over p. Let n(p,D) be a non
negative integer satisfying that

pn(p,D) | (ε
N(p)−1
D − 1) but pn(p,D)+1 6 | (ε

N(p)−1
D − 1),

where N is the absolute norm of Q(
√

D). Note that n(p,D) ≥ 1. Since

|εN(p)−1
D − 1|p = |logp(ε

N(p)−1
D )|p, we have that

|Rp(D)|p =

{
p−n(p,D) if p is unramified,
p−n(p,D)/2 if p is ramified.

Since D0p is the fundamental discriminant of the real quadratic field

Q(
√

p(p− 2)) or Q(
√

p(p− 4)), we have |
√

D0p|p = p−
1
2 . Thus, from the

above argument, to prove (2), it is enough to show that

n(p,D0p) = 1.
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First we consider the case p ≡ 1 (mod 4) and D0p is the fundamental

discriminant of the real quadratic field Q(
√

p(p− 2)). Let εD0p > 1 be the

fundamental unit of Q(
√

p(p− 2)) and α := (p − 1) +
√

p(p− 2). Since

NQ(
√

D0p)/Q(α) = 1 and α > 1, α = εj
D0p

for some positive integer j.

Let p be a prime ideal of Q(
√

D0p) over p, i.e, p = p2. Then, by easy
computation, we have

ε2j
D0p

− 1 = α2 − 1 = ((p− 1) +
√

p(p− 2))2 − 1 ≡ 0 (mod p)

ε2j
D0p

− 1 = α2 − 1 = ((p− 1) +
√

p(p− 2))2 − 1 6≡ 0 (mod p2 = p).

Now we claim that

ε
N(p)−1
D0p

− 1 = εp−1
D0p

− 1 6≡ 0 (mod p2).

Suppose that εp−1
D0p

− 1 ≡ 0 (mod p2). Since ε2j
D0p

− 1 ≡ 0 (mod p), we

have 2j|(p − 1) or (p − 1)|2j. If (p − 1)|2j, then clearly ε2j
D0p

− 1 ≡ 0 (mod

p2) and we have a contradiction. If 2j|(p− 1), write p− 1 = m · 2j and

εp−1
D0p

− 1 = (ε2j
D0p

− 1)((ε2j
D0p

)m−1 + · · ·+ 1).

Since εp−1
D0p

− 1 ≡ 0 (mod p2) and (ε2j
D0p

)m−1 + · · · + 1 ≡ m 6≡ 0 (mod p),

we also have ε2j
D0p

− 1 ≡ 0 (mod p2) and a contradiction. Thus we showed
the claim and proved n(p,D0p) = 1.

Finally we consider the case p ≡ 3 (mod 4) and D0p is the fundamental

discriminant of Q(
√

p(p− 4)). In this case, if we let α := p−2
2

+

√
p(p−4)

2
, then

by the same method, we can also prove n(p,D0p) = 1.

Remark 3. A careful analysis of the proof of Theorem 2 in [9] produces a
much more explicit result than Corollary 1.2 as follows:

If p > 3 is a prime and ε > 0, for all sufficiently large X > 0,

]{0 < D < X |h(D) 6≡ 0(mod p), χD(p) = 0, and |Rp(D)√
D

|p = 1} ≥ (c(p)−ε)

√
X

log X
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with c(p) = 1/(2(π(κ(p))−1) ·
√

κ(p)p), where π(x) is the number of primes not

exceeding x and κ(p) := p2Q3(p + 1)(Q + 1)/4 in the proof of Theorem 2 in
[9].

From this and our exact choice of D0 in Theorem 1.1, we can obtain

c(p) ≥ 1/(2(π(p7/4)−2) · p4),

since Q < p − 2 if p ≡ 1 (mod 4) and Q < p − 4 if p ≡ 3 (mod 4) except
p = 5 or 7. When p = 5, let Q = 7 and when p = 7, let Q = 5. Then we
have c(5) ≥ 1/(29846 · 35 · √105) and c(7) ≥ 1/(27257 · 35 · √105).
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