On the finiteness of certain Rabinowitsch polynomials II

Dongho Byeon

School of Mathematical Sciences, Seoul National University, Seoul, Korea e-mail: dhbyeon@math.snu.ac.kr

and

H. M. Stark

Department of Mathematics, University of California, San Diego, California 92037 e-mail: hmstark@ucsd.edu

Let m be a positive integer and $f_m(x)$ be a polynomial of the form $f_m(x) = x^2 + x - m$. We call a polynomial $f_m(x)$ a Rabinowitsch polynomial if for $t = [\sqrt{m}]$ and consecutive integers $x = x_0, x_0 + 1, \dots, x_0 + t - 1, |f(x)|$ is either 1 or prime. In [1], we showed that there are only finitely many Rabinowitsch polynomials $f_m(x)$ such that 1 + 4m is square free. In this note we shall remove the condition that 1 + 4m is square free.

1 Introduction

Let m be a positive integer and $f_m(x)$ be a polynomial of the form $f_m(x) = x^2 + x - m$. We call a polynomial $f_m(x)$ a Rabinowitsch polynomial if for

 $t = [\sqrt{m}]$ and consecutive integers $x = x_0, x_0 + 1, \dots, x_0 + t - 1, |f(x)|$ is either 1 or prime. In [1], we proved that every Rabonowitsch polynomial of the form $f_m(x) = x^2 + x - m$ is one of the following types.

- (i) $x^2 + x 2$,
- (ii) $x^2 + x t^2$, where t is 1 or a prime,
- (iii) $x^2 + x (t^2 + t + n)$, where $-t < n \le t$ and where |n| is 1 or $|n| = \frac{2t+1}{3}$ is an odd prime.

Using this and the Siegel-Brauer theorem, we showed that there are only finitely many Rabinowitch polynomials $f_m(x) = x^2 + x - m$ such that 1 + 4m is square free. In this short note, we shall remove the condition that 1 + 4m is square free by proving the following proposition.

Proposition. If $f_m(x) = x^2 + x - m$ is a Rabinowitsch polynomial, then 1 + 4m is square free except m = 2.

Thus we immediately have the following theorem.

Theorem. There are only finitely many Rabinowitsch polynomials $f_m(x) = x^2 + x - m$.

Finally we shall give the table of all 14 Rabinowitsch polynomials $f_m(x) = x^2 + x - m$ with at most one possible exception. If we assume the generalized Riemann hypothesis is true, then there is no exception.

2 Proof of Proposition

Let D = 1 + 4m. Suppose $p^2|D$ for some prime p (which must be odd). We see that for any $x \equiv \frac{p-1}{2} \pmod{p}$, we have

$$p^{2}|f_{m}(x) = \frac{1}{4}[(2x+1)^{2} - D].$$

Let $D=1+4t^2$ in the type (ii). If $1+4t^2=r^2$ for some positive integer r, then 1=(r-2t)(r+2t). But it is impossible. So D can not be a square and $D=D_0p^2$, where $D_0\neq 1,4$. If $D=2p^2$ or $3p^2$, then $D\equiv 2$ or $\equiv 3\pmod 4$. It is a contradiction to $D\equiv 1\pmod 4$. Thus we have that $D=D_0p^2$, where $D_0\geq 5$. Now $D=1+4t^2\geq 5p^2$ implies $t\geq p$.

Let $D=(2t+1)^2+4n$ in the type (iii). If $(2t+1)^2+4n=r^2$ for some positive integer r, then 4n=(r-2t-1)(r+2t+1). We easily see that it is impossible for |n|=1. Let n be an odd prime such that $|n|=\frac{2t+1}{3}$. Then n divides r and n^2 divides 4n. But it is also impossible. So D can not be a square. By a similar argument to the type (ii), we have that $D=D_0p^2$, where $D_0 \geq 5$. Now $D=(2t+1)^2+4n \geq 5p^2$ also implies $t \geq p$.

Therefore for the type (ii) and (iii), there is an $x \equiv \frac{p-1}{2} \pmod{p}$ in the range of $\{x = x_0, x_1, \dots, x_0 + t - 1\}$ and $p^2 | f_m(x)$. Thus $f_m(x)$ is not a Rabinowitsch polynomial and we proved the proposition.

3 Table

From Proposition and results in [1] [2] [4], we have the following table of all 14 Rabinowitsch polynomials $f_m(x) = x^2 + x - m$ with at most one possible exception.

m	t	n	x_0	D=1+4m	type
1(1)	1(1)	(-1)	0	5	ii(iii)
2	1		0		i
3	1	1	0	13	iii
4	2		1	17	ii
7	2	1	0	29	iii
9	3		1	37	ii
13	3	1	0	53	iii
25	5		1	101	ii
43	6	1	0	173	iii
49	7		1	197	ii
73	8	1	0	293	iii
103	10	-7	4	413*	iii
169	13		1	677	ii
283	16	11	6	1133*	iii

Remark 1. While making the table, we know that Mollin and Williams [3] obtained a similar result to our previous work in [1], by a different method. They treated the case of $x_0 = 1$, square-free 1 + 4m and produced narrow Richaud-Degert type of real quadratic fields associated to Rabinowitsch polynomials. But we considered the case of arbitrary x_0 , 1 + 4m and obtained

not only narrow Richaud-Degert type but also wide Richaud-Degert type of real quadratic fields (* in table).

Remark 2. Example (iii)-4 in [1] is not correct, because $1+4m=245=5\cdot7^2$ is not square free and $10^2+10-61=49=7^2$ is not prime.

Acknowledgments. The authors thank the referee for many helpful suggestions.

References

- [1] D. Byeon and H. M. Stark, On the finiteness of certain Rabinowitsch polynomials, *J. Number Theory*, **94** (2002), 177–180.
- [2] H. K. Kim, M. G. Leu and T. Ono, On two conjectures on Real quadratic fields, *Proc. Japan Acad.*, **63** Ser. A (1987), 222–224.
- [3] R. A. Mollin and H. C. Williams, On prime valued polynomials and class numbers of real quadratic fields, *Nagoya Math. J.*, **112** (1988), 143–151.
- [4] R. A. Mollin and H. C. Williams, Prime producing quadratic polynomials and real quadratic fields of class number one, *Theorie des nombres* (Quebec, PQ, 1987), 654–663, de Gruyter, Berlin, 1989.