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Abstract. Let E be the elliptic curve 37C in Cremona’s table with the equation

E : y2 + y = x3 + x2 − 23x− 50.

We show that for at least 40% of the positive fundamental discriminants D and
at least 24% of the negative fundamental discriminants D, Ords=1L(s,ED) = 1.
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1 Introduction and statement of result

Let E : y2 = x3 + ax + b be an elliptic curve over Q and let L(s, E) =∑∞
n=1 a(n)n−s be its Hasse-Weil L-function. Let D be the fundamental

discriminant of the quadratic field Q(
√

D) and let χD = (D
· ) denote the

usual Kronecker character. Then the Hasse-Weil L-function of the quadratic
twist ED : Dy2 = x3 + ax + b of E is the twisted L-function L(s, ED) =∑∞

n=1 χD(n)a(n)n−s. Goldfeld [4] conjectured that

∑

|D|<X

Ords=1L(s, ED) ∼ 1

2

∑

|D|<X

1. (1)
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This conjecture implies the weaker statement

]{|D| < X| Ords=1L(s, ED) = r} À X, (2)

where r = 0 or 1. For the case r = 0, there are infinitely many special elliptic
curves E satisfying the weaker statement (cf. [5] [12]) and the best known
general result is due to Ono and Skinner [9], who showed that

]{|D| < X| Ords=1L(s, ED) = 0} À X/ logX.

For the case r = 1, the best known general result is following [10];

]{|D| < X| Ords=1L(s, ED) = 1} Àε X1−ε.

However only one special elliptic curve E = X0(19) satisfying the weaker
statement (2) is known due to Vatsal [11]. We note that X0(19) is the unique
modular curve X0(N) such that the genus of X0(N) is 1, N is prime, and 3
divides the number n = (N − 1)/m where m = gcd(12, N − 1). The aim of
this note is to provide another example satisfying the weaker statement (2)
for the case r = 1 and give an estimate of the lower bound which give an
evidence of Goldfeld conjecture (1).

Theorem 1.1 Let E be the elliptic curve 37C in Cremona’s table with the
equation

E : y2 + y = x3 + x2 − 23x− 50.

Then for at least 40% of the positive fundamental discriminants D and at
least 24% of the negative fundamental discriminants D, Ords=1L(s, ED) = 1.

Remark. Let E be the elliptic curve 37C and ED(Q) be the Mordell-Weil
group of ED over Q. Then Theorem 1.1 together with a celebrated theorem
of Kolybagin implies that for at least 40% of the positive fundamental dis-
criminants D and at least 24% of the negative fundamental discriminants D,
the rank of ED(Q) is equal to 1.

To prove Theorem 1.1, like [11], we will use the result of Gross [2] on the non-
triviality of Heegner points of Eisenstein curves, the results of Davenport-
Heilbronn [1] and Nakagawa-Horie [8] on the 3-rank of the class groups of
quadratic fields, and Gross-Zagier theorem [3] on Heegner points and deriva-
tives of L-series. A new ingredient in this note is to use the fact that X0(37)
is the unique modular curve X0(N) such that N is prime, and 3 divides the
number n = (N − 1)/m, and the minus part of its Jacobian is an elliptic
curve.
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2 Preliminaries

First we recall the result of Gross [2] on the non-triviality of Heegner points
of Eisenstein curves. Let N be a prime number, m = gcd(12, N − 1), and p
be an odd prime factor of the number n = (N−1)/m. Let X be the modular
curve X0(N) and J be the Jacobian of X. Let K be an imaginary quadratic
fields of discriminant DK in which the prime (N) = n · n̄ splits completely.
Let wK denote the number of roots of unity in K.

Theorem 2.1 (Gross) Let χ be the quadratic ring class characters of K of
conductor c corresponding to the factorization

c2 ·DK = d · d′,
where d > 0 is the fundamental discriminant of real quadratic field k and d′ <
0 is the fundamental discriminant of imaginary quadratic field k′. Let L = kk′

and yχ be the Heegner divisor in J(L). Let h and h′ be the class numbers of
k and k′ respectively. Assume χ(n) = −1 and ordp(hh′) < ordp(n). Then
the projection y(p)

χ of yχ into the p-Eisenstein quotient J (p)(L) of J(L) has
infinite order.

Theorem 2.2 (Gross) Let χ = 1 and yχ be the Heegner divisor in J(K).
Let A = OK [N−1] and hA be the class number of A. Assume (p, wK) = 1
and ordp(hA) < ordp(n). Then the projection y(p)

χ of yχ into the p-Eisenstein

quotient J (p)(K) of J(K) has infinite order.

Now we recall the result of Nakagawa and Horie [8] which is a refinement
of the result of Davenport and Heilbronn [1]. Let m and N be two positive
integers satisfying the following condition:

(∗) If an odd prime number p is a common divisor of m and N ,
then p2 divides N but not m. Further if N is even, then (i) 4
divides N and m ≡ 1 (mod 4), or (ii) 16 divides N and m ≡ 8 or
12 (mod 16).

For any positive real number X > 0, we denote by S+(X) the set of pos-
itive fundamental discriminants D < X and by S−(X) the set of negative
fundamental discriminants D > −X, and put

S+(X,m, N) := {D ∈ S+(X) |D ≡ m (mod N)},
S−(X,m, N) := {D ∈ S−(X) |D ≡ m (mod N)}.
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Theorem 2.3 (Nakagawa and Horie) Let D be a fundamental discriminant
and r3(D) be the 3-rank of the quadratic field Q(

√
D). Then for any two

positive integers m,N satisfying (∗),

lim
X→∞

∑

D∈S+(X,m,N)

3r3(D)/
∑

D∈S+(X,m,N)

1 =
4

3

and
lim

X→∞

∑

D∈S−(X,m,N)

3r3(D)/
∑

D∈S−(X,m,N)

1 = 2.

From Theorem 2.3 and the following fact
∑

D∈S±(X,m,N)

r3(D)=0

3r3(D) + 3(
∑

D∈S±(X,m,N)

1− ∑

D∈S±(X,m,N)

r3(D)=0

3r3(D))

≤ ∑

D∈S±(X,m,N)

3r3(D),

we can easily obtain the following lemma.

Lemma 2.4 Let D be a fundamental discriminant and h(D) the class num-
ber of the quadratic field Q(

√
D). Then for any two positive integers m,N

satisfying (∗),

lim inf
X→∞

]{D ∈ S+(X,m, N) |h(D) 6≡ 0 (mod 3)}
]S+(X, m,N)

≥ 5

6

and

lim inf
X→∞

]{D ∈ S−(X, m,N) |h(D) 6≡ 0 (mod 3)}
]S−(X,m, N)

≥ 1

2
.

3 Proof of Theorem 1.1

Let N = 37. Then m = 12 and n = p = 3. In this case X = X0(37) is
the modular curve with genus 2. Decomposing J = J0(37) by means of the
canonical involution w, we may consider the exact sequence

0 → J+ → J → J− → 0,
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where J+ = (1 + w)J . We note that dimJ+=dimJ−=1 (See [6], Table in
Introduction).

Proposition 3.1 J− is the elliptic curve 37C in Cremona’s table with the
equation

E : y2 + y = x3 + x2 − 23x− 50.

Proof: See [7], Proposition 1 in §5.
2

Let J̃ be the Eisenstein quotient of J . We know that J̃ factors through J−

and the p-Eisenstein quotient J (p) of J is a quotient of J̃ (See [6], chap. II
(10.4) and chap. II (17.10)). Thus we have the following proposition.

Proposition 3.2 J (p) is a quotient of J− = E.

Proposition 3.3 Let k be a real quadratic field where the prime 37 is inert.
If the class number h of k is prime to 3, then the projection of yχ into
E(k)(= J−(k)) has infinite order.

Proof: Let k be a real quadratic field of discriminant d where 37 is inert and
whose class number h of k is prime to 3. Let k′ be the imaginary quadratic
field Q(

√−2) of discriminant −8. Note that 37 is inert in k′ and the class
number h′ of k′ is equal to 1. Let K be the third field contained in the
biquadratic extension L = kk′. Then K is imaginary and 37 splits in K. Let
DK be the discriminant of K and χ be the quadratic ring class characters of
K of conductor c corresponding to the factoring of c2 ·DK = d · (−8). Then
from Theorem 2.1, we know that y(p)

χ has infinite order in J (p)(L). Since J (p)

is a quotient of J− = E by Proposition 3.2, the projection of yχ to E(L) has
infinite order. We note that E(L) = E(k)⊕E(k′) and E(k′) = E(Q) = Z/3Z.
Thus the projection of yχ to E(k) should have infinite order. 2

Proposition 3.4 Let K( 6= Q(
√−3)) be an imaginary quadratic field where

the prime 37 is split. If the class number of h of K is prime to 3, then the
projection of yχ into E(K)(= J−(K)) has infinite order.
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Proof: Let K be an imaginary quadratic field where 37 is split and whose
class number h of K is prime to 3. In this case, we note that hA is simply the
quotient of hK by the order of n in the class group of K. Then from Theorem
2.2, we have that y(p)

χ has infinite order in J (p)(L). Since J (p) factors through
J− = E by Proposition 3.2, the projection of yχ to E(K) should have infinite
order. 2

Proof of Theorem 1.1: First we compute the number of quadratic fields k and
K in Proposition 3.3 and 3.4. By a well-known method in analytic number
theory we have the following estimate on S±(X, m,N). (See [8], Proposition
2.)

]S+(X, m, N) ∼ ]S−(X,m, N) ∼ 3X

π2ϕ(N)

∏

p|N

q

p + 1
(X →∞),

where q = 4 or p according as p = 2 or not. Thus from Lemma 2.4, we obtain
the following desired estimates.

lim inf
X→∞

]{D ∈ S+(X) |h(D) 6≡ 0 (mod 3) and ( D
37

) = −1}
]S+(X)

≥ 5

6
· 18

37
' 0.405,

lim inf
X→∞

]{D ∈ S−(X) |h(D) 6≡ 0 (mod 3) and ( D
37

) = 1}
]S−(X)

≥ 1

2
· 18

37
' 0.243.

Finally Theorem 1.1 follows from Proposition 3.3, Proposition 3.4, and the
Gross-Zagier Theorem [3] on Heegner points and derivatives of L-series. 2

Remark. Similarly we can obtain the following.

Let E be the elliptic curve X0(19) in [11]. Then for at least 39% of the positive
fundamental discriminants D and at least 23% of the negative fundamental
discriminants D, Ords=1L(s, ED) = 1.
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