Ranks of quadratic twists of an elliptic curve
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Abstract. Let E be the elliptic curve 37C in Cremona’s table with the equation
E:y?+y=a>+ 2> — 23z — 50.

We show that for at least 40% of the positive fundamental discriminants D and
at least 24% of the negative fundamental discriminants D, Ords—1L(s, Ep) = 1.
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1 Introduction and statement of result

Let £ : y> = 23 4+ ax + b be an elliptic curve over Q and let L(s, F) =
> a(n)n™ be its Hasse-Weil L-function. Let D be the fundamental
discriminant of the quadratic field Q(v/D) and let xp = (2) denote the
usual Kronecker character. Then the Hasse-Weil L-function of the quadratic
twist Fp : Dy? = 2° + ax + b of E is the twisted L-function L(s, Ep) =
> xp(n)a(n)n=s. Goldfeld [4] conjectured that

> OrdszlL(s,ED)N; > L (1)

|D|<X |D|<X
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This conjecture implies the weaker statement
t{|D| < X| Ords—1L(s, Ep) =1} > X, (2)

where r = 0 or 1. For the case r = 0, there are infinitely many special elliptic
curves FE satisfying the weaker statement (cf. [5] [12]) and the best known
general result is due to Ono and Skinner [9], who showed that

t{|D] < X| Ord,=1L(s, Ep) = 0} > X/ logX.
For the case r = 1, the best known general result is following [10];
#{|D| < X| Ords—1 L(s, Ep) = 1} >, X'

However only one special elliptic curve F = X(19) satisfying the weaker
statement (2) is known due to Vatsal [11]. We note that X(19) is the unique
modular curve Xy(NV) such that the genus of Xo(N) is 1, N is prime, and 3
divides the number n = (N — 1)/m where m = ged(12, N — 1). The aim of
this note is to provide another example satisfying the weaker statement (2)
for the case r = 1 and give an estimate of the lower bound which give an
evidence of Goldfeld conjecture (1).

Theorem 1.1 Let E be the elliptic curve 37C in Cremona’s table with the
equation

E:y*+y=a®4 2> — 232 — 50.
Then for at least 40% of the positive fundamental discriminants D and at
least 24% of the negative fundamental discriminants D, Ords—;L(s, Ep) = 1.

Remark. Let E be the elliptic curve 37C and Ep(Q) be the Mordell-Weil
group of Ep over Q. Then Theorem 1.1 together with a celebrated theorem
of Kolybagin implies that for at least 40% of the positive fundamental dis-
criminants D and at least 24% of the negative fundamental discriminants D,
the rank of Ep(Q) is equal to 1.

To prove Theorem 1.1, like [11], we will use the result of Gross [2] on the non-
triviality of Heegner points of Eisenstein curves, the results of Davenport-
Heilbronn [1] and Nakagawa-Horie [8] on the 3-rank of the class groups of
quadratic fields, and Gross-Zagier theorem [3] on Heegner points and deriva-
tives of L-series. A new ingredient in this note is to use the fact that X,(37)
is the unique modular curve Xo(/N) such that N is prime, and 3 divides the
number n = (N — 1)/m, and the minus part of its Jacobian is an elliptic
curve.



2 Preliminaries

First we recall the result of Gross [2] on the non-triviality of Heegner points
of Eisenstein curves. Let N be a prime number, m = ged(12, N — 1), and p
be an odd prime factor of the number n = (N —1)/m. Let X be the modular
curve Xo(N) and J be the Jacobian of X. Let K be an imaginary quadratic
fields of discriminant Dg in which the prime (V) = n - i splits completely.
Let wg denote the number of roots of unity in K.

Theorem 2.1 (Gross) Let x be the quadratic ring class characters of K of
conductor ¢ corresponding to the factorization

2 Di=d-d,

where d > 0 is the fundamental discriminant of real quadratic field k and d' <
0 is the fundamental discriminant of imaginary quadratic field k'. Let L = kk’
and y, be the Heegner divisor in J(L). Let h and I’ be the class numbers of
k and k' respectively. Assume x(n) = —1 and ord,(hh') < ord,(n). Then
the projection y&p) of yy into the p-Eisenstein quotient J® (L) of J(L) has
infinite order.

Theorem 2.2 (Gross) Let x = 1 and y, be the Heegner divisor in J(K).
Let A = O[N] and ha be the class number of A. Assume (p,wg) = 1
and ord,(ha) < ord,(n). Then the projection y&p) of y, into the p-FEisenstein
quotient JP)(K) of J(K) has infinite order.

Now we recall the result of Nakagawa and Horie [8] which is a refinement
of the result of Davenport and Heilbronn [1]. Let m and N be two positive
integers satisfying the following condition:

() If an odd prime number p is a common divisor of m and N,
then p? divides N but not m. Further if N is even, then (i) 4
divides N and m =1 (mod 4), or (ii) 16 divides N and m = 8 or
12 (mod 16).

For any positive real number X > 0, we denote by S, (X) the set of pos-
itive fundamental discriminants D < X and by S_(X) the set of negative
fundamental discriminants D > — X, and put

Sy (X,m,N):={D € S:(X)| D =m(mod N)},
S_(X,m,N):={D € S_(X)|D=m(mod N)}.



Theorem 2.3 (Nakagawa and Horie) Let D be a fundamental discriminant
and r3(D) be the S-rank of the quadratic field Q(v/D). Then for any two
positive integers m, N satisfying (*),

4
; r3(D) _ =
LD DR D D

DeSy(X,m,N) DeSy(X,m,N)

and

: r3(D) _
Jim > 3r3tP) ) > 1=2.

DeS_(X,m,N) DeS_(X,m,N)

From Theorem 2.3 and the following fact

Z 373(D) + 3( Z 1 — Z 3T3(D))

DeSt (X,m,N) DES+(X,m,N) DeSt (X,m,N)
r3(D)=0 r3(D)=0
D
< X W
DeS4 (X,m,N)

we can easily obtain the following lemma.

Lemma 2.4 Let D be a fundamental discriminant and h(D) the class num-
ber of the quadratic field Q(\/E) Then for any two positive integers m, N

satisfying (*),
.. D eSS (X,m,N)|h(D)#0(mod 3)} _ 5
hXJOréf 1S (X, m, N) 6

v

and

f g HD € S_(X,m, N) [ 1(D) # 0 (mod 3)}
Xee S (X, m, N)

(V2
l\:).\ —

3 Proof of Theorem 1.1

Let N = 37. Then m = 12 and n = p = 3. In this case X = X(37) is
the modular curve with genus 2. Decomposing J = Jy(37) by means of the
canonical involution w, we may consider the exact sequence

0—J,—-J—J —0,
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where J; = (1 4+ w)J. We note that dimJ;=dimJ =1 (See [6], Table in
Introduction).

Proposition 3.1 J~ s the elliptic curve 37C in Cremona’s table with the
equation
E:y*+y=a>+2*— 23z — 50.

Proof: See [7], Proposition 1 in §5.
O

Let J be the Eisenstein quotient of J. We know that J factors through J~
and the p-Eisenstein quotient J® of .J is a quotient of J (See [6], chap. II
(10.4) and chap. II (17.10)). Thus we have the following proposition.

Proposition 3.2 J® is a quotient of J- = E.

Proposition 3.3 Let k be a real quadratic field where the prime 37 is inert.
If the class number h of k is prime to 3, then the projection of y, into
E(k)(= J~(k)) has infinite order.

Proof: Let k be a real quadratic field of discriminant d where 37 is inert and
whose class number h of k is prime to 3. Let k' be the imaginary quadratic
field Q(v/—2) of discriminant —8. Note that 37 is inert in &’ and the class
number h' of £’ is equal to 1. Let K be the third field contained in the
biquadratic extension L = kk’. Then K is imaginary and 37 splits in K. Let
Dg be the discriminant of K and y be the quadratic ring class characters of
K of conductor ¢ corresponding to the factoring of ¢* - Dy = d - (—8). Then
from Theorem 2.1, we know that y)((p) has infinite order in J® (L). Since J®
is a quotient of J~ = E by Proposition 3.2, the projection of y, to E(L) has
infinite order. We note that F(L) = E(k)®E(K') and E(k') = E(Q) = Z/3Z.
Thus the projection of y, to E(k) should have infinite order. a

Proposition 3.4 Let K(# Q(v/—3)) be an imaginary quadratic field where
the prime 37 is split. If the class number of h of K is prime to 3, then the
projection of y,, into E(K)(= J~(K)) has infinite order.



Proof: Let K be an imaginary quadratic field where 37 is split and whose
class number h of K is prime to 3. In this case, we note that h 4 is simply the
quotient of hy by the order of n in the class group of K. Then from Theorem
2.2, we have that yg”) has infinite order in J® (L). Since J® factors through
J~ = E by Proposition 3.2, the projection of y, to £(K') should have infinite
order. a

Proof of Theorem 1.1: First we compute the number of quadratic fields k and
K in Proposition 3.3 and 3.4. By a well-known method in analytic number
theory we have the following estimate on Sy (X, m, N). (See [8], Proposition
2.)

3X

ﬁS+(X7m7N)NIjS—(X=m7N)NWQSO(N)Hpj_l (X_>OO>7
pIN

where ¢ = 4 or p according as p = 2 or not. Thus from Lemma 2.4, we obtain
the following desired estimates.

#H{D € S, (X)|h(D) #0(mod 3) and (£)= -1} _ 5 18

lim inf 31 2004

imin 15, (X) 5 37 0.405,
D (X D m Dy =1

y infﬁ{ € S_(X)|h(D) #0(mod 3) and (5) }>1 18N0.243‘

paes 15_(X) =2 37

Finally Theorem 1.1 follows from Proposition 3.3, Proposition 3.4, and the
Gross-Zagier Theorem [3] on Heegner points and derivatives of L-series. O

Remark. Similarly we can obtain the following.

Let E be the elliptic curve Xo(19) in [11]. Then for at least 39% of the positive
fundamental discriminants D and at least 23% of the negative fundamental
discriminants D, Ords—1 L(s, Ep) = 1.
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