Ranks of quadratic twists of an elliptic curve

Dongho Byeon *

Department of Mathematics, Seoul National University, Seoul, Korea e-mail: dhbyeon@math.snu.ac.kr

Abstract. Let E be the elliptic curve 37C in Cremona's table with the equation

$$E: y^2 + y = x^3 + x^2 - 23x - 50.$$

We show that for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants D, $\operatorname{Ord}_{s=1}L(s, E_D) = 1$.

Mathematics Subject Classification (2000). 11M, 11R.

Key words. rank, quadratic twist, elliptic curve.

1 Introduction and statement of result

Let $E: y^2 = x^3 + ax + b$ be an elliptic curve over $\mathbb Q$ and let $L(s,E) = \sum_{n=1}^\infty a(n)n^{-s}$ be its Hasse-Weil L-function. Let D be the fundamental discriminant of the quadratic field $\mathbb Q(\sqrt{D})$ and let $\chi_D = (\frac{D}{\cdot})$ denote the usual Kronecker character. Then the Hasse-Weil L-function of the quadratic twist $E_D: Dy^2 = x^3 + ax + b$ of E is the twisted L-function $L(s, E_D) = \sum_{n=1}^\infty \chi_D(n)a(n)n^{-s}$. Goldfeld [4] conjectured that

$$\sum_{|D| < X} \operatorname{Ord}_{s=1} L(s, E_D) \sim \frac{1}{2} \sum_{|D| < X} 1.$$
 (1)

 $^{^*}$ This work was supported by grant No. R08-2003-000-10243-0 from the Basic Research Program of the Korea Science & Engineering Foundation

This conjecture implies the weaker statement

$$\sharp\{|D| < X| \text{ Ord}_{s=1}L(s, E_D) = r\} \gg X,\tag{2}$$

where r = 0 or 1. For the case r = 0, there are infinitely many special elliptic curves E satisfying the weaker statement (cf. [5] [12]) and the best known general result is due to Ono and Skinner [9], who showed that

$$\sharp\{|D| < X| \operatorname{Ord}_{s=1}L(s, E_D) = 0\} \gg X/\log X.$$

For the case r = 1, the best known general result is following [10];

$$\sharp\{|D| < X| \operatorname{Ord}_{s=1} L(s, E_D) = 1\} \gg_{\epsilon} X^{1-\epsilon}.$$

However only one special elliptic curve $E = X_0(19)$ satisfying the weaker statement (2) is known due to Vatsal [11]. We note that $X_0(19)$ is the unique modular curve $X_0(N)$ such that the genus of $X_0(N)$ is 1, N is prime, and 3 divides the number n = (N-1)/m where $m = \gcd(12, N-1)$. The aim of this note is to provide another example satisfying the weaker statement (2) for the case r = 1 and give an estimate of the lower bound which give an evidence of Goldfeld conjecture (1).

Theorem 1.1 Let E be the elliptic curve 37C in Cremona's table with the equation

$$E: y^2 + y = x^3 + x^2 - 23x - 50.$$

Then for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants D, $\operatorname{Ord}_{s=1}L(s, E_D) = 1$.

Remark. Let E be the elliptic curve 37C and $E_D(\mathbb{Q})$ be the Mordell-Weil group of E_D over \mathbb{Q} . Then Theorem 1.1 together with a celebrated theorem of Kolybagin implies that for at least 40% of the positive fundamental discriminants D and at least 24% of the negative fundamental discriminants D, the rank of $E_D(\mathbb{Q})$ is equal to 1.

To prove Theorem 1.1, like [11], we will use the result of Gross [2] on the non-triviality of Heegner points of Eisenstein curves, the results of Davenport-Heilbronn [1] and Nakagawa-Horie [8] on the 3-rank of the class groups of quadratic fields, and Gross-Zagier theorem [3] on Heegner points and derivatives of L-series. A new ingredient in this note is to use the fact that $X_0(37)$ is the unique modular curve $X_0(N)$ such that N is prime, and 3 divides the number n = (N-1)/m, and the minus part of its Jacobian is an elliptic curve.

2 Preliminaries

First we recall the result of Gross [2] on the non-triviality of Heegner points of Eisenstein curves. Let N be a prime number, $m = \gcd(12, N-1)$, and p be an odd prime factor of the number n = (N-1)/m. Let X be the modular curve $X_0(N)$ and J be the Jacobian of X. Let K be an imaginary quadratic fields of discriminant D_K in which the prime $(N) = \mathbf{n} \cdot \bar{\mathbf{n}}$ splits completely. Let w_K denote the number of roots of unity in K.

Theorem 2.1 (Gross) Let χ be the quadratic ring class characters of K of conductor c corresponding to the factorization

$$c^2 \cdot D_K = d \cdot d',$$

where d > 0 is the fundamental discriminant of real quadratic field k and d' < 0 is the fundamental discriminant of imaginary quadratic field k'. Let L = kk' and y_{χ} be the Heegner divisor in J(L). Let h and h' be the class numbers of k and k' respectively. Assume $\chi(\mathbf{n}) = -1$ and $\operatorname{ord}_p(hh') < \operatorname{ord}_p(n)$. Then the projection $y_{\chi}^{(p)}$ of y_{χ} into the p-Eisenstein quotient $J^{(p)}(L)$ of J(L) has infinite order.

Theorem 2.2 (Gross) Let $\chi = 1$ and y_{χ} be the Heegner divisor in J(K). Let $A = \mathcal{O}_K[N^{-1}]$ and h_A be the class number of A. Assume $(p, w_K) = 1$ and $\operatorname{ord}_p(h_A) < \operatorname{ord}_p(n)$. Then the projection $y_{\chi}^{(p)}$ of y_{χ} into the p-Eisenstein quotient $J^{(p)}(K)$ of J(K) has infinite order.

Now we recall the result of Nakagawa and Horie [8] which is a refinement of the result of Davenport and Heilbronn [1]. Let m and N be two positive integers satisfying the following condition:

(*) If an odd prime number p is a common divisor of m and N, then p^2 divides N but not m. Further if N is even, then (i) 4 divides N and $m \equiv 1 \pmod{4}$, or (ii) 16 divides N and $m \equiv 8$ or 12 (mod 16).

For any positive real number X > 0, we denote by $S_{+}(X)$ the set of positive fundamental discriminants D < X and by $S_{-}(X)$ the set of negative fundamental discriminants D > -X, and put

$$S_{+}(X, m, N) := \{ D \in S_{+}(X) \mid D \equiv m \pmod{N} \},$$

$$S_-(X,m,N) := \{D \in S_-(X) \,|\, D \equiv m \,(\mathrm{mod}\ \mathrm{N})\}.$$

Theorem 2.3 (Nakagawa and Horie) Let D be a fundamental discriminant and $r_3(D)$ be the 3-rank of the quadratic field $\mathbb{Q}(\sqrt{D})$. Then for any two positive integers m, N satisfying (*),

$$\lim_{X \to \infty} \sum_{D \in S_{+}(X,m,N)} 3^{r_{3}(D)} / \sum_{D \in S_{+}(X,m,N)} 1 = \frac{4}{3}$$

and

$$\lim_{X \to \infty} \sum_{D \in S_{-}(X,m,N)} 3^{r_3(D)} / \sum_{D \in S_{-}(X,m,N)} 1 = 2.$$

From Theorem 2.3 and the following fact

$$\sum_{\substack{D \in S_{\pm}(X,m,N) \\ r_3(D)=0}} 3^{r_3(D)} + 3\left(\sum_{\substack{D \in S_{\pm}(X,m,N) \\ D \in S_{\pm}(X,m,N)}} 1 - \sum_{\substack{D \in S_{\pm}(X,m,N) \\ r_3(D)=0}} 3^{r_3(D)}\right)$$

$$\leq \sum_{\substack{D \in S_{\pm}(X,m,N) \\ D \in S_{\pm}(X,m,N)}} 3^{r_3(D)},$$

we can easily obtain the following lemma.

Lemma 2.4 Let D be a fundamental discriminant and h(D) the class number of the quadratic field $\mathbb{Q}(\sqrt{D})$. Then for any two positive integers m, N satisfying (*),

$$\liminf_{X \to \infty} \frac{\sharp \{ D \in S_+(X, m, N) \mid h(D) \not\equiv 0 \pmod{3} \}}{\sharp S_+(X, m, N)} \ge \frac{5}{6}$$

and

$$\liminf_{X \to \infty} \frac{\sharp \{D \in S_{-}(X, m, N) \mid h(D) \not\equiv 0 \pmod{3}\}}{\sharp S_{-}(X, m, N)} \ge \frac{1}{2}.$$

3 Proof of Theorem 1.1

Let N = 37. Then m = 12 and n = p = 3. In this case $X = X_0(37)$ is the modular curve with genus 2. Decomposing $J = J_0(37)$ by means of the canonical involution w, we may consider the exact sequence

$$0 \to J_+ \to J \to J^- \to 0$$
,

where $J_{+} = (1 + w)J$. We note that $\dim J_{+} = \dim J^{-} = 1$ (See [6], Table in Introduction).

Proposition 3.1 J^- is the elliptic curve 37C in Cremona's table with the equation

$$E: y^2 + y = x^3 + x^2 - 23x - 50.$$

Proof: See [7], Proposition 1 in §5.

Let \tilde{J} be the Eisenstein quotient of J. We know that \tilde{J} factors through J^- and the p-Eisenstein quotient $J^{(p)}$ of J is a quotient of \tilde{J} (See [6], chap. II (10.4) and chap. II (17.10)). Thus we have the following proposition.

Proposition 3.2 $J^{(p)}$ is a quotient of $J^- = E$.

Proposition 3.3 Let k be a real quadratic field where the prime 37 is inert. If the class number h of k is prime to 3, then the projection of y_{χ} into $E(k)(=J^{-}(k))$ has infinite order.

Proof: Let k be a real quadratic field of discriminant d where 37 is inert and whose class number h of k is prime to 3. Let k' be the imaginary quadratic field $\mathbb{Q}(\sqrt{-2})$ of discriminant -8. Note that 37 is inert in k' and the class number h' of k' is equal to 1. Let K be the third field contained in the biquadratic extension L = kk'. Then K is imaginary and 37 splits in K. Let D_K be the discriminant of K and χ be the quadratic ring class characters of K of conductor c corresponding to the factoring of $c^2 \cdot D_K = d \cdot (-8)$. Then from Theorem 2.1, we know that $y_{\chi}^{(p)}$ has infinite order in $J^{(p)}(L)$. Since $J^{(p)}$ is a quotient of $J^- = E$ by Proposition 3.2, the projection of y_{χ} to E(L) has infinite order. We note that $E(L) = E(k) \oplus E(k')$ and $E(k') = E(\mathbb{Q}) = \mathbb{Z}/3\mathbb{Z}$. Thus the projection of y_{χ} to E(k) should have infinite order.

Proposition 3.4 Let $K(\neq \mathbb{Q}(\sqrt{-3}))$ be an imaginary quadratic field where the prime 37 is split. If the class number of h of K is prime to 3, then the projection of y_{χ} into $E(K)(=J^{-}(K))$ has infinite order.

Proof: Let K be an imaginary quadratic field where 37 is split and whose class number h of K is prime to 3. In this case, we note that h_A is simply the quotient of h_K by the order of \mathbf{n} in the class group of K. Then from Theorem 2.2, we have that $y_{\chi}^{(p)}$ has infinite order in $J^{(p)}(L)$. Since $J^{(p)}$ factors through $J^- = E$ by Proposition 3.2, the projection of y_{χ} to E(K) should have infinite order.

Proof of Theorem 1.1: First we compute the number of quadratic fields k and K in Proposition 3.3 and 3.4. By a well-known method in analytic number theory we have the following estimate on $S_{\pm}(X, m, N)$. (See [8], Proposition 2.)

$$\sharp S_{+}(X,m,N) \sim \sharp S_{-}(X,m,N) \sim \frac{3X}{\pi^{2}\varphi(N)} \prod_{p|N} \frac{q}{p+1} \qquad (X \to \infty),$$

where q=4 or p according as p=2 or not. Thus from Lemma 2.4, we obtain the following desired estimates.

$$\liminf_{X \to \infty} \frac{\sharp \{D \in S_+(X) \mid h(D) \not\equiv 0 \pmod{3} \text{ and } (\frac{D}{37}) = -1\}}{\sharp S_+(X)} \ge \frac{5}{6} \cdot \frac{18}{37} \simeq 0.405,$$

$$\liminf_{X \to \infty} \frac{\sharp \{D \in S_{-}(X) \mid h(D) \not\equiv 0 \pmod{3} \mod (\frac{D}{37}) = 1\}}{\sharp S_{-}(X)} \ge \frac{1}{2} \cdot \frac{18}{37} \simeq 0.243.$$

Finally Theorem 1.1 follows from Proposition 3.3, Proposition 3.4, and the Gross-Zagier Theorem [3] on Heegner points and derivatives of L-series. \Box

Remark. Similarly we can obtain the following.

Let E be the elliptic curve $X_0(19)$ in [11]. Then for at least 39% of the positive fundamental discriminants D and at least 23% of the negative fundamental discriminants D, $\operatorname{Ord}_{s=1}L(s, E_D) = 1$.

References

[1] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields II, Proc. Roy. Soc. London A, **322** (1971), 405–420.

- [2] B. Gross, Heegner points on $X_0(N)$, Modular forms (R. Rankin, ed.), Chichester, Ellis Horwood Company, 1984
- [3] B. Gross and D. Zagier, Heegner points and derivatives of L-series, Invent. Math. 84 (1986), 225–320.
- [4] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, Number Theory, Carbondale, Splinger Lect. Notes **751** (1979), 108-118.
- [5] K. James, L-series with nonzero central critical value, J. Amer. Math. Soc. 11 (1998), 635–641.
- [6] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S. 47 (1978), 33–186.
- [7] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil Curves, Invent. Math. **25** (1974), 1–61.
- [8] J. Nakagawa and K. Horie, Elliptic curves with no torsion points, Proc. A.M.S. **104** (1988), 20 25.
- [9] K. Ono and C. Skinner, Non-vanishing of quadratic twists of modular L-functions, Invent. Math. **134** (1998), 651–660.
- [10] A. Perelli and J. Pomykala, Averages of twisted L-functions, Acta Arithmetica 80 (1997), 149–163.
- [11] V. Vatsal, Rank-one twists of a certain elliptic curve, Mathematiche Annalen, **311** (1998), 791–794.
- [12] V. Vatsal, Canonical periods and congruence formulae, Duke Math. J. **98** (1999), 397–419.