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1 Introduction and statement of results

Let D be the fundamental discriminant of the quadratic field Q(
√

D) and
χD := (D

· ) the usual Kronecker character. Let p be prime, Zp the ring of

p-adic integers, and λp(Q(
√

D)) the Iwasawa λ-invariant of the cyclotomic
Zp-extension of Q(

√
D). In this paper, we shall prove the following:

Theorem 1.1 For any odd prime p,

]{−X < D < 0 |λp(Q(
√

D)) = 1, χD(p) = 1} À
√

X

log X
.

Horie [9] proved that for any odd prime p, there exist infinitely many imagi-
nary quadratic fields Q(

√
D) with λp(Q(

√
D)) = 0 and the author [1] gave a

lower bound for the number of such imaginary quadratic fields. It is known
that for any prime p which splits in the imaginary quadratic field Q(

√
D),

λp(Q(
√

D)) ≥ 1. So it is interesting to see how often the trivial λ-invariant
appears for such a prime. Jochnowitz [10] proved that for any odd prime p, if
there exists one imaginary quadratic field Q(

√
D0) with λp(Q(

√
D0)) = 1 and
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χD0(p) = 1, then there exist an infinite number of such imaginary quadratic
fields.
For the case of real quadratic fields, Greenberg [8] conjectured that λp(Q(

√
D))

= 0 for all real quadratic fields and all prime numbers p. Ono [11] and Byeon
[2] [3] showed that for all prime numbers p, there exist infinitely many real
quadratic fields Q(

√
D) with λp(Q(

√
D)) = 0 and gave a lower bound for the

number of such real quadratic fields.
In section 3, we shall prove the following:

Proposition 1.2 For any odd prime p, if there is a negative fundamental
discriminant D0 < 0 such that λp(Q(

√
D0)) = 1 and χD0(p) = 1, then

]{−X < D < 0 |λp(Q(
√

D)) = 1, χD(p) = 1} À
√

X

log X
.

In section 4, we shall prove the followings:

Proposition 1.3 Let p be an odd prime and D0 < 0 be the fundamental
discriminant of the imaginary quadratic field Q(

√
1− p2). Then χD0(p) = 1

and λp(Q(
√

D0)) = 1 if and only if 2p−1 6≡ 1 (mod p2), that is, p is not a
Wieferich prime.

Proposition 1.4 Let p be a Wieferich prime. If p ≡ 3 (mod 4), let D0 < 0 be
the fundamental discriminant of the imaginary quadratic field Q(

√
1− p) and

if p ≡ 1 (mod 4), let D0 < 0 be the fundamental discriminant of the imaginary
quadratic field Q(

√
4− p). Then χD0(p) = 1 and λp(Q(

√
D0)) = 1.

From these three propositions, Theorem 1.1 follows.

2 Preliminaries

Let χ be a non-trivial even primitive Dirichlet character of conductor f which
is not divisible by p2. Let Lp(s, χ) be the Kubota-Leopoldt p-adic L-function
and Oχ = Zp[χ(1), χ(2), · · ·]. Then there is a power series F (T, χ) ∈ Oχ[[T ]]
such that

Lp(s, χ) = F ((1 + pd)s − 1, χ),
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where d = f if p 6 |f and d = f/p if p|f . Let π be a generator for the ideal of
Oχ above p. Then we may write

F (T, χ) = G(T )U(T ),

where U(T ) is a unit of Oχ[[T ]], and G(T ) is a distinguished polynomial: that
is, G(T ) = a0 + a1T + · · ·+ T λ with π|ai for i ≤ λ− 1. Define λ(Lp(s, χ)) be
the index of the first coefficient of F (T, χ) not divisible by π. Let ω be the
the Teichmüller character.

Lemma 2.1 (Dummit, Ford, Kisilevsky and Sands [5, Proposition 5.1]) Let
D < 0 be the fundamental discriminant of the imaginary quadratic field
Q(
√

D). Then

λp(Q(
√

D)) = λ(Lp(s, χDω)).

Lemma 2.2 (Washington [13, Lemma1]) Let D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(

√
D).

λ(Lp(s, χDω)) = 1 ⇐⇒ Lp(0, χDω) 6≡ Lp(1, χDω) (mod p2).

From these lemmas, we can show the following:

Proposition 2.3 Let p be an odd prime and D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(

√
D) such that χD(p) = 1.

Then L(1−p,χD)
p

is p-integral and

λp(Q(
√

D)) = 1 ⇐⇒ L(1− p, χD)

p
6≡ 0 (mod p),

where L(s, χD) is the Dirichlet L-function.

Proof: By the construction of the p-adic L-function Lp(s, χD),

Lp(0, χDω) = −(1− χDω · ω−1(p))B1,χDω·ω−1

= −(1− χD(p))B1,χD
.

where Bn,χD
is the generalized Bernoulli number. Since χD(p) = 1,

Lp(0, χDω) = 0.
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Similarly,

Lp(1− p, χDω) = −(1− χDω · ω−p(p)pp−1)Bp,χDω·ω−p/p

= −(1− χD(p)pp−1)Bp,χD
/p

= (1− pp−1)L(1− p, χD)

≡ L(1− p, χD) (mod p2).

Since χDω 6= 1 is not a character of the second kind, Lp(1 − p, χDω) and
L(1− p, χD) are p-integral (See [14]). By the congruence of Lp(s, χD),

Lp(1, χDω) ≡ Lp(0, χDω) = 0 (mod p),

and
Lp(1, χDω) ≡ Lp(1− p, χDω) (mod p2).

Thus L(1−p,χD)
p

is p-integral and

L(1− p, χD)

p
6≡ 0 (mod p) ⇐⇒ Lp(1, χDω) 6≡ 0 (mod p2). (1)

From the equation (1) and Lemmas 2.1, 2.2, the proposition follows. 2

3 Proof of Proposition 1.2

Let Mk(Γ0(N), χ) denote the space of modular forms of weight k on Γ0(N)
with character χ. For a positive integer r ≥ 2, let

Fr(z) :=
∑

N 6=0

H(r,N)qN ∈ Mr+ 1
2
(Γ0(4), χ0)

be the Cohen modular form [4], where q := e2πiz. We note that if Dn2 =
(−1)rN , then

H(r,N) = L(1− r, χD)
∑

d|n
µ(d)χD(d)dr−1σ2r−1(n/d), (2)

where σν(n) :=
∑

d|n dν . From Fp(z), we can construct the modular form

Gp(z) :=
∑

(−n
p

)=1,( n
Q

)=−1

H(p, n)

p
qn ∈ Mp+ 1

2
(Γ0(4p

4Q4), χ0),
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where Q is a prime such that Q 6= p. From Proposition 2.3 and the equation
(2), if D < 0 is the fundamental discriminant of the imaginary quadratic
field Q(

√
D) such that χD(p) = 1, then

H(p,−D)

p
=

L(1− p, χD)

p

is p-integral. Using similar methods in Ono [11] and Byeon [2], that is,
applying a theorem of Sturm [12] to the following two modular forms

(Ul|Gp)(z) =
∑

(−n
p

)=1,( n
Q

)=−1

H(p, ln)

p
qn ∈ Mp+ 1

2
(Γ0(4p

4Q4l), (
4l

· )),

(Vl|Gp)(z) =
∑

(−n
p

)=1,( n
Q

)=−1

H(p, n)

p
qln ∈ Mp+ 1

2
(Γ0(4p

4Q4l), (
4l

· )),

where l 6= p is a suitable prime and comparing the coefficients of q−D0l3 of
these modular forms, where D0 < 0 is a fundamental discriminant of the
imaginary quadratic field Q(

√
D0) such that χD0(p) = 1 and H(p,−D0)

p
6≡

0 (mod p), we can obtain the following:

Proposition 3.1 Let p be an odd prime. Assume that there is a fundamental
discriminant D0 < 0 of the imaginary quadratic field Q(

√
D0) such that

(i) χD0(p) = 1,

(ii) H(p,−D0)
p

6≡ 0 (mod p).

Then there is an arithmetic progression rp (mod ptp) with (rp, ptp) = 1 and
(−rp

p
) = 1, and a constant κ(p) such that for each prime l ≡ rp (mod ptp)

there is an integer 1 ≤ dl ≤ κ(p)l for which

(i) Dl := −dll is a fundamental discriminant,

(ii) H(p,−Dl)
p

6≡ 0 (mod p).
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Proof of Proposition 1.2: Let Dl < 0 be the fundamental discriminant in

Proposition 3.1. Then χDl
(p) = 1 and H(p,−Dl)

p
=

L(1−p,χDl
)

p
6≡ 0 (mod p).

By Proposition 2.3, λp(Q(
√

Dl)) = 1. By Dirichlet’s theorem on primes in

arithmetic progression, we have that the number of such Dl < X is À
√

X
log X

.
2

4 Proof of Propositions 1.3 and 1.4

To prove Propositions 1.3 and 1.4, we shall use of the following criterion of
Gold.

Lemma 4.1 (Gold [7]) Let p be an odd prime and D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(

√
D) such that χD(p) = 1.

Let (p) = PP̄ in Q(
√

D). Suppose that Pr = (π) is principal for some integer
r not divisible by p. Then λp(Q(

√
D)) = 1 if and only if πp−1 6≡ 1 (mod P̄2).

First we shall prove Proposition 1.3.
Proof of Proposition 1.3: We note that 1−p2 is not a square. Let P = (p, 1+√

1− p2) and P̄ = (p, 1−√1− p2). Then (p) = PP̄ and P2 = (1+
√

1− p2),
P̄2 = (1−√1− p2). From Lemma 4.1, λp(Q(

√
D0)) = 1 if and only if

(1 +
√

1− p2)p−1 6≡ 1 mod ( 1−√1− p2 ).

This is equivalent to that

(1 +
√

1− p2)p − (1 +
√

1− p2) 6≡ 0 mod ( p2 = (1−√1− p2)(1 +
√

1− p2) ). (3)

We see that

(1 +
√

1− p2)p − (1 +
√

1− p2)

≡
p−1
2∑

n=0

(
p
2n

)
+ (

p−1
2∑

n=0

(
p

2n + 1

)
)
√

1− p2 − (1 +
√

1− p2)

≡ (

p−1
2∑

n=0

(
p
2n

)
− 1) + (

p−1
2∑

n=0

(
p

2n + 1

)
− 1)

√
1− p2

≡ (2p−1 − 1)(1 +
√

1− p2) (mod p2),
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where we have used the fact

p−1
2∑

n=0

(
p
2n

)
=

p−1
2∑

n=0

(
p

2n + 1

)
= 2p−1.

Thus the equation (3) is true if and only if 2p−1 6≡ 1 (mod p2), that is, p is
not a Wieferich prime and the proposition follows. 2

Finally we shall prove Proposition 1.4.
Proof of Proposition 1.4: We note that 1 − p is not a square if p ≡ 3 (mod
4) and 4− p is not a square if p ≡ 1 (mod 4). We also note that χD0(p) = 1.
First we consider the case p ≡ 3 (mod 4). Let P = (1 +

√
1− p) and P̄ =

(1−√1− p). Then (p) = PP̄ and P2 = ((1+
√

1− p)2), P̄2 = ((1−√1− p)2).
Then from Lemma 4.1, λp(Q(

√
D0)) = 1 if and only if

(1 +
√

1− p)2(p−1) 6≡ 1 mod ( (1−√1− p)2 ).

This is equivalent to that

(1 +
√

1− p)2p − (1 +
√

1− p)2 6≡ 0 mod ( p2 = (1−√1− p)2(1 +
√

1− p)2 ). (4)

We see that

(1 +
√

1− p)2p ≡
p∑

n=0

((
2p
2n

)
(1− p)n

)
+

√
1− p ·

p−1∑

n=0

((
2p

2n + 1

)
(1− p)n

)

≡
p∑

n=0

((
2p
2n

)
(1− np)

)
+

√
1− p ·

p−1∑

n=0

((
2p

2n + 1

)
(1− np)

)

≡
p∑

n=0

(
2p
2n

)
− p ·

p∑

n=0

n

(
2p
2n

)

+
√

1− p ·



p−1∑

n=0

(
2p

2n + 1

)
− p ·

p−1∑

n=0

n

(
2p

2n + 1

)
 (mod p2),

where we have used the fact that (1 − p)n ≡ 1 − np (mod p2). Now, using
the following facts
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p∑

n=0

(
2p
2n

)
=

p−1∑

n=0

(
2p

2n + 1

)
= 22p−1,

p∑

n=1

n

(
2p
2n

)
= p · 22p−2,

p−1∑

n=1

n

(
2p

2n + 1

)
= (p− 1) · 22p−2,

we find that

(1 +
√

1− p)2p ≡ 22p−1 +
√

1− p · (22p−1 + p · 22p−2) (mod p2).

Hence we have

(1+
√

1− p)2p−(1+
√

1− p)2 ≡ (22p−1+p−2)+(22p−1+p·22p−2−2)
√

1− p (mod p2).

Thus the equation (4) is true if and only if

22p−1 + p− 2 6≡ 0 (mod p2) or 22p−1 + p · 22p−2 − 2 6≡ 0 (mod p2). (5)

But it is easy to see that (5) is true if 2p−1 ≡ 1 (mod p2). Hence if p is a
Wieferich prime, then λp(Q(

√
D0)) should be equal to 1.

Now we consider the case p ≡ 1 (mod 4). Let P = (2 +
√

4− p) and
P̄ = (2 − √

4− p). Then (p) = PP̄ and P2 = ((2 +
√

4− p)2), P̄2 =
((2−√4− p)2). Then from Lemma 4.1, λp(Q(

√
D0)) = 1 if and only if

(2 +
√

4− p)2(p−1) 6≡ 1 mod ( (2−√4− p)2 ).

This is equivalent to that

(2 +
√

4− p)2p − (2 +
√

4− p)2 6≡ 0 mod ( p2 = (2−√4− p)2(2 +
√

4− p)2 ). (6)

By a computation similar to the above, we have

(2+
√

4− p)2p−(2+
√

4− p)2 ≡ (24p−1+p−8)+(24p−2+p·24p−5−4)
√

4− p (mod p2).

Thus the equation (6) is true if and only if

24p−1 + p− 8 6≡ 0 (mod p2) or 24p−2 + p · 24p−5 − 4 6≡ 0 (mod p2). (7)
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But it is also easy to see that (7) is true if 2p−1 ≡ 1 (mod p2). Hence if p is
a Wieferich prime, then λp(Q(

√
D0)) should be equal to 1 and we prove the

proposition. 2

Remark. It seems interesting that Propositions 1.3 and 1.4 give criteria for
the Wieferich prrimes. We know that the Wieferich primes are very rare.
The only Wieferich primes for p ≤ 4× 1012 are p = 1093 and p = 3511 (See
[5]).
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