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1 Introduction and statement of results

Let D be the fundamental discriminant of the quadratic field Q(v/D) and
xp = (£) the usual Kronecker character. Let p be prime, Z, the ring of

p-adic integers, and \,(Q(v/D)) the Iwasawa A-invariant of the cyclotomic
Z,-extension of Q(v/D). In this paper, we shall prove the following:

Theorem 1.1 For any odd prime p,

VX
log X~

H{-X <D <0[MQ(VD) =1, xp(p) = 1} >

Horie [9] proved that for any odd prime p, there exist infinitely many imagi-
nary quadratic fields Q(v/D) with \,(Q(v/D)) = 0 and the author [1] gave a
lower bound for the number of such imaginary quadratic fields. It is known
that for any prime p which splits in the imaginary quadratic field Q(v/D),
M(Q(VD)) > 1. So it is interesting to see how often the trivial A-invariant
appears for such a prime. Jochnowitz [10] proved that for any odd prime p, if
there exists one imaginary quadratic field Q(v/Dy) with A\,(Q(y/Dy)) = 1 and
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XD, (p) = 1, then there exist an infinite number of such imaginary quadratic
fields.

For the case of real quadratic fields, Greenberg [8] conjectured that \,(Q(v/D))
= 0 for all real quadratic fields and all prime numbers p. Ono [11] and Byeon
2] [3] showed that for all prime numbers p, there exist infinitely many real
quadratic fields Q(v/D) with \,(Q(+/D)) = 0 and gave a lower bound for the
number of such real quadratic fields.

In section 3, we shall prove the following:

Proposition 1.2 For any odd prime p, if there is a negative fundamental
discriminant Dy < 0 such that \,(Q(v/Dyp)) =1 and xp,(p) = 1, then

vX
log X

H{-X <D <0[MQ(VD) =1, xp(p) = 1} >

In section 4, we shall prove the followings:

Proposition 1.3 Let p be an odd prime and Dy < 0 be the fundamental
discriminant of the imaginary quadratic field Q(v/1 — p?). Then xp,(p) =1
and A\y(Q(v/Do)) = 1 if and only if 271 # 1 (mod p*), that is, p is not a
Wieferich prime.

Proposition 1.4 Letp be a Wieferich prime. If p =3 (mod4), let Dy < 0 be
the fundamental discriminant of the imaginary quadratic field Q(v/1 — p) and
ifp=1 (mod4), let Dy < 0 be the fundamental discriminant of the imaginary

quadratic field Q(v/4—p). Then xp,(p) =1 and \,(Q(v/Dy)) = 1.

From these three propositions, Theorem 1.1 follows.

2 Preliminaries

Let x be a non-trivial even primitive Dirichlet character of conductor f which
is not divisible by p?. Let L, (s, x) be the Kubota-Leopoldt p-adic L-function
and O, = Z,[x(1),x(2),---]. Then there is a power series F|(T,x) € O,[[T]]
such that

Ly(s,x) = F((1 +pd)* = 1,x),



where d = fif p Jf and d = f/p if p|f. Let ™ be a generator for the ideal of
O, above p. Then we may write

F(T,x) = GTU(T),

where U(T') is a unit of O, [[T]], and G(T) is a distinguished polynomial: that
is, G(T) = ap+ a1 T + - - - + T* with 7|a; for i < X\ — 1. Define \(L,(s, X)) be
the index of the first coefficient of F/(T), x) not divisible by 7. Let w be the
the Teichmiiller character.

Lemma 2.1 (Dummit, Ford, Kisilevsky and Sands [5, Proposition 5.1]) Let
D < 0 be the fundamental discriminant of the imaginary quadratic field

Q(VD). Then
M(Q(VD)) = A(Ly(5, xpw))-

Lemma 2.2 (Washington [13, Lemmal]) Let D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(v/D).

ANLy(s,xpw)) =1 <= L,(0, xpw) Z Ly(1,xpw) (mod p?).
From these lemmas, we can show the following:

Proposition 2.3 Let p be an odd prime and D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(v/D) such that xp(p) = 1.
Then W is p-integral and

L(1—p,xp)

MW(QVD)) =1 = # 0 (mod p),

where L(s, xp) is the Dirichlet L-function.
Proof: By the construction of the p-adic L-function L,(s, xp),

Ly(0,xpw) = —(1—xpw - wil(p))BLXDW'W_I
= —(1—=xp(p))Biyxp-

where B, ,,, is the generalized Bernoulli number. Since xp(p) = 1,

L,(0, xpw) = 0.
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Similarly,

Lp(l - D, XDW) = _<1 — XDW - wip(p>ppil)Bp,XDw-w*P/p
= —(1- XD(p)pp_l)Bp,XD/p
= (1-p"")L(l - p,xp)
= L(1—-p,xp) (mod p?).
Since ypw # 1 is not a character of the second kind, L,(1 — p, xpw) and
L(1 —p, xp) are p-integral (See [14]). By the congruence of L,(s, xp),
Lp(L, xpw) = Lp(0, xpw) = 0 (mod p),
and
Ly(1, xpw) = Lyp(1 = p, xpw) (mod p?).

Thus W is p-integral and

L(1 —
UL 2 o ) 4 Ly(Lpw) 20 (mod ). (1
From the equation (1) and Lemmas 2.1, 2.2, the proposition follows. O

3 Proof of Proposition 1.2

Let M (T'o(N), x) denote the space of modular forms of weight & on T'o(N)
with character y. For a positive integer r > 2, let

FT('Z) = Z H(T> N)qN € Mr+%(FO(4)7 XO)
NZ0

be the Cohen modular form [4], where ¢ := €*™*. We note that if Dn? =
(=1)"N, then

H(r,N) = L(1 —r,xp) >_i(d)xp(d)d" " 02r—1(n/d), (2)

where 0, (n) := g, d”. From F,(z), we can construct the modular form

G- ¥ T, (a0 )

(22)=1,(3)=-1



where () is a prime such that ) # p. From Proposition 2.3 and the equation
(2), if D < 0 is the fundamental discriminant of the imaginary quadratic

field Q(v/D) such that yp(p) = 1, then

p p

is p-integral. Using similar methods in Ono [11] and Byeon [2], that is,
applying a theorem of Sturm [12] to the following two modular forms

wlenE = ¥ TP e maiei. (D),
(52)=1,(8)=—1
G = X e moin. (),

(2)=L(5)=

where | # p is a suitable prime and comparing the coefficients of q*Dolg of
these modular forms, where Dy < 0 is a fundamental discriminant of the
imaginary quadratic field Q(+/Dp) such that xp,(p) = 1 and 7D°) =

0 (mod p), we can obtain the following:

Proposition 3.1 Let p be an odd prime. Assume that there is a fundamental
discriminant Dy < 0 of the imaginary quadratic field Q(~/Dy) such that

(i) xpo(p) = 1,
(i) HE=Po) =0 (mod p).

Then there is an arithmetic progression 1, (mod pt,) with (rp,pt,) =1 and
(%) = 1, and a constant k(p) such that for each prime | = r, (mod pt,)
there is an integer 1 < d; < k(p)l for which

(i) D, := —dyl is a fundamental discriminant,

(ii) HEB0 0 (mod p).



Proof of Proposition 1.2: Let D; < 0 be the fundamental discriminant in

Proposition 3.1. Then xp,(p) = 1 and H(p’;Dl) = L(l_i’XDl) # 0 (mod p).

By Proposition 2.3, A\,(Q(v/D;)) = 1. By Dirichlet’s theorem on primes in
arithmetic progression, we have that the number of such D; < X is > 135('

O

4 Proof of Propositions 1.3 and 1.4

To prove Propositions 1.3 and 1.4, we shall use of the following criterion of

Gold.

Lemma 4.1 (Gold [7]) Let p be an odd prime and D < 0 be the fundamental
discriminant of the imaginary quadratic field Q(v/D) such that xp(p) = 1.
Let (p) = PP in Q(v/D). Suppose that P™ = (r) is principal for some integer
r not divisible by p. Then \,(Q(v/'D)) = 1 if and only if 7~' # 1 (mod P?).

First we shall prove Proposition 1.3.
Proof of Proposition 1.3: We note that 1 —p? is not a square. Let P = (p, 1+

VI—=p?) and P = (p,1—+/1T—p?). Then (p) = PP and P? = (1+ /1 — p?),
P? = (1 — /1 —p?). From Lemma 4.1, \,(Q(y/Dy)) = 1 if and only if

(I+1—pP P £1 mod (1-VI—p7).
This is equivalent to that
AL = (1= £ 0 mod (9= (1= VI= )1 +VT=77) ). (3
We see that

(14+4/1—p*)P —(144/1—p?)

“ S8 ) E (W0

27" = 1)(1++/1—=p?) (mod p?),



where we have used the fact

p—1 p—1
~(p ) O p op—1
S(o)-3(uh, ) -2

Thus the equation (3) is true if and only if 2771 # 1 (mod p?), that is, p is
not a Wieferich prime and the proposition follows. a

Finally we shall prove Proposition 1.4.

Proof of Proposition 1.4: We note that 1 — p is not a square if p = 3 (mod
4) and 4 — p is not a square if p = 1 (mod 4). We also note that yp,(p) = 1.
First we consider the case p = 3 (mod 4). Let P = (1 + /T —p) and P =

(1-VT=p). Then (p) = PP and P? = ((14+yT=p)%), B = (1—yT=p)?).
Then from Lemma 4.1, A\,(Q(v/Dy)) = 1 if and only if

(14 \/E)Q(p_l) #Z1 mod ( (1 —+1—p)?).

This is equivalent to that

I+ 1=p)* =1+ /1=p)?#0 mod (p*=(1—T=p*(1+/T=p)*). (4)

We see that

Il
M*@

Il
1
s e N

(1+y/1=p)%

= 5 (%) 5 (3)
+ m'(§<2n2i1>_p’§”(2n2i1>> (mod p*),

where we have used the fact that (1 —p)® = 1 — np (mod p?). Now, using
the following facts



£(2)-5(t) -+
= 2n = 2n+1
L 2p 2p—2
Z n ( on | = p-2 ,
n=1
p—1 2p
_ . 92p—2

we find that

(L T—p? =27 4 /1 —p- (2 4+ p-2%7%) (mod p?).
Hence we have
(1+/1 = p)P—(1+/1 — p)® = (22 4p—2)+(2% 1 4p-2272-2),/1 — p (mod p?).
Thus the equation (4) is true if and only if
22771 41— 220 (mod p?) or 2% 4+p.2%2 220 (mod p?). (5)

But it is easy to see that (5) is true if 227! = 1 (mod p?). Hence if p is a
Wieferich prime, then \,(Q(y/Dp)) should be equal to 1.
Now we consider the case p = 1 (mod 4). Let P = (2 + /4 —p) and
P = (2 +4—p). Then (p) = PP and P2 = ((2 + 4—p)?), P? =
(2 —+/4—=p)?). Then from Lemma 4.1, A\,(Q(v/Dy)) = 1 if and only if
@+ TP 21 mod (2 VITH?)

This is equivalent to that

2+4—pP—2+/4—p)°#0 mod (p* =2 - VE—p)>*2+vI—p)?). (6)

By a computation similar to the above, we have

(2+1/4 — )" —(2+/4 —p)* = 2V 4p—8)+ (2 *+p27°—4) /4 — p (mod p?).

Thus the equation (6) is true if and only if

2%~ L p —8£0 (mod p?) or 2% 24 p.2%5 _42£0 (mod p?). (7)
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But it is also easy to see that (7) is true if 227! =1 (mod p?). Hence if p is
a Wieferich prime, then A\,(Q(1/Dy)) should be equal to 1 and we prove the
proposition. O

Remark. It seems interesting that Propositions 1.3 and 1.4 give criteria for
the Wieferich prrimes. We know that the Wieferich primes are very rare.
The only Wieferich primes for p < 4 x 102 are p = 1093 and p = 3511 (See

[5])-
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