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Abstract. Let g be an odd positive integer and X be a positive real number.
We shall show that for any ε > 0, the number of imaginary quadratic fields with
discriminant ≥ −X and ideal class group having a subgroup isomorphic to Z/gZ×
Z/gZ is À X1/g−ε.
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1 Introduction and statement of result

Numerous results about divisibility of class numbers of quadratic fields are
known by many authors (cf. [1], [4], [7], [8], [9], [10], [11], [12]). The best
known quantitative result for imaginary quadratic fields is;

(Soundararajan [9]) If g ≥ 3 is an odd positive integer, then the
number of imaginary quadratic fields whose absolute discriminant
is ≤ X and whose ideal class group has an element of order g is

À X
1
2
+ 1

g
−ε, for any ε > 0.

and for real quadratic fields is;
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(Yu [12]) If g ≥ 3 is an odd positive integer, then the number
of real quadratic fields whose absolute discriminant is ≤ X and

whose ideal class group has an element of order g is À X
1
g
−ε, for

any ε > 0.

Under the assumption that ideal class group of quadratic field is quite rarely
noncyclic, Cohen and Lenstra [2] predict a postive probability of such an
event.

On the other hand, Yamamoto [11] proved that for any odd positive
integer g ≥ 3, there are infinitely many imaginary quadratic fields with ideal
class group having a subgroup isomorphic to Z/gZ×Z/gZ. For real quadratic
fields, less is known except the case g = 3, 5, 7 due to Craig [3] and Mestre
[5] [6].

However it seems that there is no known quantitative result about the
number of quadratic fields whose ideal class groups is not cyclic. The aim of
this note is to give a lower bound for this number.

Theorem Let g be an odd positive integer and X be a positive real number.
For any ε > 0, the number of imaginary quadratic fields with discriminant
≥ −X and ideal class group having a subgroup isomorphic to Z/gZ× Z/gZ
is À X1/g−ε.

The theorem will be obtained by a straightforward modification of Yu’s con-
struction in [12]. Thus mainly we shall follow the paper of Yu.

2 Preliminaries

Let g be an odd positive integer with factorization

g = pδ1
1 pδ2

2 · · · pδk
k

where p1,p2, · · ·, pk are distinct primes and δj ≥ 1 for 1 ≤ j ≤ k. For every
j, we fix two distinct primes lj and l′j such that lj ≡ l′j ≡ 1 (mod pj).

Lemma 1(Yamamoto [11]) let y, z, y′, z′ be a non-trivial solution of the
Diophantine equation

Y 2 − 4Zg = Y ′2 − 4Z ′g
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such that

(i) (y, z) = (y′, z′) = 1;
(ii) lj|z and l′j|z′;
(iii) y (resp. y′) is not a pjth power residue modulo lj, (resp. l′j), (1 ≤ j ≤ k);

(iv) y+y′
2

is a pjth power residue modulo lj (1 ≤ j ≤ k).

Then the ideal class group of the field

F := Q(
√

y2 − 4Zg)

has a subgroup N such that

N ∼= { Z/gZ× Z/gZ if D < −4,
Z/gZ if D > 0,

where D is the discriminant of F .

From the Chebotarev density theorem, we note that, for any prime factor
pj of g there are infinitely many primes lj ≡ 1 (mod pj) such that 2 is a
pjth power residue modulo lj and 3 is not (cf. [Lemma 3, 11]). For each
pj (1 ≤ j ≤ k), we fix two such primes lj, l′j such that we have 2k distinct
primes {l1, · · · , lk, l′1, · · · l′k}. Set

α :=
k∏

j=1

lj, β :=
k∏

j=1

l′j and Ω := 4αβ.

Lemma 2(Yu [12]) Suppose we have the fixed triplet (α, β, Ω). For a, b two
integers satisfying

a ≡ α (mod Ω), b ≡ β (mod Ω),

let

d :=
3

4
(3ag + bg)(ag + 3bg).

Then the ideal class group of Q(
√

d) has a subgroup N such that

N ∼= { Z/gZ× Z/gZ if D < −4,
Z/gZ if D > 0.

Proof: In [12], Yu considered only the case that a, b are positive. But it is
clear that Lemma 2 holds for negative or positive integers a, b. 2
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3 Proof of Theorem

Lemma 3 Let P be a positive real number. Suppose

a := −A and b := B where ΩP < A, B < 2
1
g ΩP,

satisfy the condition in Lemma 2. Then

d = −3

4
(3Ag −Bg)(3Bg − Ag) < 0

and the ideal class group of the imaginary quadratic fields Q(
√

d) has a sub-
group N isomorphic to Z/gZ× Z/gZ.

Proof: Note that 3ΩgP g < 3Ag < 6ΩgP g and ΩgP g < Bg < 2ΩgP g. So we
have

ΩgP g < 3Ag −Bg < 5ΩgP g.

Similarly we have
ΩgP g < 3Bg − Ag < 5ΩgP g.

Thus d < 0 and Lemma 3 follows from Lemma 2. 2

Let P be a sufficiently large positive real number and M = P 2−(3/2)ε. Let
f(A,B) and F (A,B) are the binary forms defined by

f(A,B) := (3Ag −Bg), F (A,B) := f(A,B)f(B,A).

From the Chebotarev density theorem, we note that the subset of primes q
for which 3 is a gth power residue modulo q constitutes a positive proportion
of all primes. Thus there exist À P 2−(3/2)ε(log P )−3 integers m satisfying

M < m = q1q2q3 ≤ 8M,

where q1, q2 and q3 are primes subject the condition

P 2/3−(1/2)ε < q1 < q2 < q3 ≤ 2P 2/3−(1/2)ε

and also satisfying the condition that 3 be a gth power residue modulo qj,
j = 1, 2, 3.
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By r(m) we denote the number of pairs (A,B) with ΩP < A, B ≤ 2
1
g ΩP , for

which F (A,B) is divisible by some m, and for which the condition in Lemma
3 is satisfied. We write

S1(P ) :=
∑

M<m≤8M

r(m)

and
S2(P ) :=

∑

M<m≤8M

r2(m).

Lemma 4(Yu [12])

(i) S1(P ) À P 2(log P )−3,
(ii) S2(P ) ¿ P 2+2ε

Proof: See the proofs of Lemma 5 and Lemma 6 in [12]. 2

Proof of Theorem: From Lemma 4, we have

(
3g + 1

3
)−1

∑

M < m ≤ 8M
r(m) > 0

1

r(m)
À S1(P )3

S2(P )2
À P 2−5ε. (1)

We note that a number d in Lemma 3 can be divisible by at most (
3g + 1

3
)

different m, because d can have at most 3g+1 prime factors q which satisfies
P 2/3−(1/2)ε < q ≤ 2P 2/3−(1/2)ε. Thus the left-hand side of (1) gives a lower
bound for the cardinality of a set D(P ) which satisfies:

(1) D(P ) ⊂ [−3
4
· 25Ω2gP 2g,−3

4
Ω2gP 2g];

(2) every d ∈ D(P ) is divisible by some m and is given by the form−3
4
F (A,B)

for some A,B satisfying the condition in Lemma 3;
(3) if d1, d2, ∈ D(P ) are distinct, then g.c.d.(d1, d2) is not divisible by any
m.

For every d ∈ D(p), we write d = d0f
2 such that d0 is square-free. Suppose

D′(P ) is the subset of D(P ) consisting of the elements d with d0 divisible by
some m. Then we have

|D′(P )| = |D(P )|+ O(P 4/3 + ε) À P 2−5ε.
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Setting

P =
1

Ω
(
4

3
· 1

25
X)1/2g,

we have proved the theorem. 2
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