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Abstract. Let g ≥ 2 and n ≥ 1 be integers. In this paper, we shall show that
there are infinitely many imaginary quadratic fields whose class number is divisible
by 2g and whose discriminant has only two prime divisors. As a corollary, we shall
show that there are infinitely many imaginary quadratic fields whose 2-class group
is a cyclic group of order divisible by 2n.

1 Introduction and statement of results

Let K = Q(
√

D) be the quadratic field with discriminant D, and Cl(D) and h(D)
be the ideal class group of K and its class number respectively. The ideal class
group of K in the narrow sense and its class number are denoted by CL+(D)
and h+(D) respectively. We have h+(D) = 2h(D) if D > 0 and the fundamental
unit εD has the norm 1, and h+(D) = h(D) otherwise. If we assume that |D|
has just two distinct prime divisors then by the genus theory of Gauss, the 2-class
group of K (that is, the Sylow 2-subgroup of CL+(D)) is cyclic. After Rédei and
Reichardt ([12] [13] [14]), many authors ([2] [3] [6] [7] [8] [9] [10] [16]) investigated
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the conditions for h+(D) to be divisible by 2n when the 2-class group of K is cyclic.
However the criterion for h+(D) to be divisible by 2n is known for only n ≤ 4 and
the existence of quadratic fields with arbitrarily large cyclic 2-class groups is not
known yet. In this direction, we shall show the following result.

Corollary 1.1 Let n ≥ 1 be an integer. There are infinitely many imaginary
quadratic fields whose 2-class group is a cyclic group of order divisible by 2n.

On the other hand, Belabas and Fouvry [4] proved that there are infinitely many
primes p such that the class number of the real quadratic field Q(

√
p) is not

divisible by 3. It seems interesting to consider similar question for the divisibility
of class numbers of quadratic fields whose discriminant has a small number of
prime divisors. In this direction, we shall show the following theorem.

Theorem 1.2 Let g ≥ 2 be an integer. Then there are infinitely many imaginary
quadratic fields whose ideal class group has an element of order 2g and whose
discriminant has only two prime divisors.

We note that Corollary 1.1 is an immediate consequence of the case g = 2n in
Theorem 1.2 and the genus theory of Gauss.

2 Proof of Theorem 1.2

To prove Theorem 1.2, we need some preliminaries. We recall a result of Brüdern,
Kawada and Wooley [5], improving a previous result of Perelli [11], which implies
almost all integer values of the polynomial 2Φ(x) are the sum of two primes.

Lemma 2.1 Let Φ(x) ∈ Z[x] be a polynomial of degree k with positive leading
coefficient and let Sk(N,Φ) be the number of positive integers n, with 1 ≤ n ≤ N ,
for which the equation

2Φ(n) = p + q

has no solution in primes p, q. Then there is an absolute constant c > 0 such that

Sk(N,Φ) �Φ N1−c/k.

We note that Sk(N,Φ) �Φ N1−c/k means that there is a constant C which depends
on Φ and satisfies Sk(N,Φ) < C ·N1−c/k for sufficiently large N . Now using well
known results (for an example, see [15]) on the divisibility of class numbers of
imaginary quadratic fields, we can prove Theorem 1.2.
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Proof of Theorem 1.2: Let g ≥ 2 be an integer and let

Φ(x) = 2(8x + 1)g ∈ Z[X].

Then by Lemma 2.1, there are infinitely many positive integers m′, for which the
equation

2Φ(m′) = 4(8m′ + 1)g = p + q (1)

has a solution in odd primes p, q. Since 4(8m′ + 1)g = p + q ≡ 4 (mod 8), the
primes p, q should satisfy one of the following conditions:

(i) p ≡ 1 (mod 8) and q ≡ 3 (mod 8),
(ii) p ≡ 3 (mod 8) and q ≡ 1 (mod 8),
(iii) p ≡ 5 (mod 8) and q ≡ 7 (mod 8),
(iv) p ≡ 7 (mod 8) and q ≡ 5 (mod 8).

For m′, p, q satisfying the equation (1), let m = 8m′ + 1 and n = p−q
2 > 0 (we can

assume p > q, without loss of generality).Then we have infinitely many distinct
positive square-free integers

d = 4m2g − n2 = (
p + q

2
)2 − (

p− q

2
)2 = pq. (2)

We consider the ideal factorization in Q(
√
−d)

(4m2g) = (n2 + d) = (n +
√
−d)(n−

√
−d).

From the conditions (i)-(iv), we have that −d ≡ 5 (mod 8) and n is odd. So n±
√
−d

2
is an algebraic integer and we can also consider the ideal factorization in Q(

√
−d)

(m)2g = (
n +

√
−d

2
)(

n−
√
−d

2
).

We claim that the two ideals (n+
√
−d

2 ) and (n−
√
−d

2 ) are coprime. If a is a common
factor, then a should divide (m2g, n). But (m2g, n) = 1, otherwise d = 4m2g − n2

is not square-free. So there are no common factors of the two ideals (n+
√
−d

2 ) and
(n−

√
−d

2 ).
Thus each ideals (n±

√
−d

2 ) is a 2g-th power, say b2g = (n+
√
−d

2 ). Suppose that
b has order r < 2g. Then r ≤ g and br = (u+v

√
−d

2 ), where u, v are non-zero
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integers such that u ≡ v (mod 2). Since Q(
√
−d) has only the units ±1, we have

the relation

(
n +

√
−d

2
) = ±(

u + v
√
−d

2
)

2g
r .

If we take norms on both sides of the equation b2g = (n+
√
−d

2 ), we have

m2g =
n2 + d

4
= N(br)

2g
r = (

u2 + v2d

4
)

2g
r ≥ (

1 + d

4
)2,

that is,

4mg − 1 ≥ d. (3)

But from the equation (2), we have

(2mg − n)(2mg + n) = d.

If 2mg − n > 1 then 2mg + n ≤ d
2 . It contradicts to (3). And 2mg − n = 1 is

impossible because 2mg − n = p+q
2 − p−q

2 = q can not be equal to 1. Thus we
conclude that the order of b is exactly 2g and completes the proof. 2

Remark. The construction of imaginary quadratic fields with class number di-
visible by 2g in the proof of Theorem 1.2 is due to the idea of Balog and Ono in
[1]. To get some results on the nontriviality of Shafarevich-Tate groups of certain
elliptic curves, they construct infinitely many

d = ABp1 · · · p2l = m2l − n2,

where A,B are integer constants and pi, 1 ≤ i ≤ 2l are distinct primes satisfying
some conditions.
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[12] L. Rédei, Über die Grundeinheit unt die durch 8 teilbaren Invarianten der ab-
solten Klasseengruppe im quadratischen Zahlkörpers, J. Reine Angew. Math.
171 (1934), 131-148.
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