Indivisibility of class numbers of imaginary quadratic function fields

Dongho Byeon (Seoul) †‡

Abstract. We show that for an odd prime number \(l \), there are infinitely many imaginary quadratic extensions \(F \) over the rational function field \(K = \mathbb{F}_q(T) \) such that the class number of \(F \) is not divisible by \(l \).

1 Introduction

Let \(p \) be an odd prime number, \(q \) a power of \(p \) and \(\mathbb{F}_q \) the finite field with cardinality \(q \). Let \(T \) be an indeterminate and \(K = \mathbb{F}_q(T) \) the rational function field. Let \(A = \mathbb{F}_q[T] \) and \(A^{(1)} \) be the set of all non-zero monic polynomials in \(A \).

There have been many works on the divisibility of class numbers of function fields \(F \) over \(K \). For examples, Friesen [3], Cardon and Murty [1], respectively, proved that there are infinitely many real and imaginary, respectively, quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is divisible by \(l \), which is a function field analogue of well-known result on the quadratic number fields.

However, much less is known on the indivisibility. In [6], Kimura proved that there are infinitely many quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is not divisible by 3. For an odd prime number \(l \), Ichimura [5] constructed infinitely many imaginary quadratic extensions \(F \) over \(K \) such that the class number of \(F \) is not divisible by \(l \), when the order of \(q \mod l \) in the multiplicative group \((\mathbb{Z}/l\mathbb{Z})^*\) is odd or \(l = p \).

In this paper, we shall show the following theorem.

*2000 Mathematics Subject Classification: Primary 11R58; Secondary 11R11, 11R29.
†This work was supported by KRF-2005-070-C00004.
‡The author also holds joint appointment in the Research Institute of Mathematics, Seoul National University.
Theorem 1.1 Let l be an odd prime number. Then there are infinitely many imaginary quadratic extensions F over K such that the class number of F is not divisible by l.

Theorem 1.1 is a function field analogue of Hartung’s work [4] on the imaginary quadratic number fields. To prove this theorem, following Hartung’s idea in [4], we shall use the class number relation over function fields which is developed by Yu [8].

Remark. For number field case, the Cohen-Lenstra heuristics imply that if l is an odd prime number, then the probability l does not divide the class number of imaginary quadratic number field is
\[\prod_{i=1}^{\infty} \left(1 - \frac{1}{l^{\omega(D_i^2)}} \right). \]

For function field case, Lee [Section 3.3, 7] shows that the Friedman and Washington’s conjectures [2] for the function field analogue of the Cohen-Lenstra heuristics imply that if $l (\neq p)$ is an odd prime number, then the probability l does not divide the class number of imaginary quadratic function field is also
\[\prod_{i=1}^{\infty} \left(1 - \frac{1}{l^{\omega(D_i^2)}} \right). \]

2 Class number relation

For details, we refer to the paper of Yu [8]. Let $D \in A$ be a fundamental discriminant. Let $F = K(\sqrt{D})$ be the quadratic extension over $K = \mathbb{F}_q(T)$ and $\mathcal{O}_{Df^2} = A + A\sqrt{Df^2}$ the order of conductor $f \in A^{(1)}$ in F. The order of the finite group Pic(\mathcal{O}_{Df^2}) is called the class number of discriminant Df^2 and is denoted by $h(Df^2)$.

From now on, we assume that $F = K(\sqrt{D})$ is imaginary, i.e., the place ∞ of K does not split in F. We also say that D and Df^2 are imaginary discriminants. Then we can define $\omega(Df^2) := \sharp\mathcal{O}_{Df^2}/(q - 1)$ and $h'(Df^2) := h(Df^2)/\omega(Df^2)$. Let χ_D be the usual Kronecker character satisfying for prime $P \in A^{(1)}$, $\chi_D(P) = 1$ if P splits in F, $\chi_D(P) = 0$ if P ramifies in F and $\chi_D(P) = -1$ otherwise. For an element $x \in A$, we let $|x| := q^{\deg x}$.

Then for any fundamental imaginary discriminant D and conductor f, we have
\[h'(Df^2) = h'(D)|f| \prod_{P|f} \left(1 - \frac{\chi_D(P)}{|P|} \right), \]
where the product runs over primes $P \in A^{(1)}$ dividing f. We define the Hurwitz class number $H(Df^2)$ as

$$H(Df^2) := \sum_{f' \in A^{(1)} \atop f'|f} h'(Df'^2).$$

Yu obtained the following class number relation.

Theorem 2.1 (Yu [8]) For any m in $A^{(1)}$,

$$\sum_{t \in A \atop \mu \in K^*/K^{*2}} H(t^2 - \mu m) = \sum_{d \in A^{(1)} \atop d|m} \max (|d|, |m/d|) - \sum_{d \in A^{(1)} \atop d|m} |m|^{-1/2} \frac{|m| - |m - d^2|}{q - 1},$$

where the first sum runs over all such pairs $(t, \mu) \in A \times K^*/K^{*2}$ that $t^2 - \mu m$ is an imaginary discriminant or $t^2 - \mu m = 0$.

3 Proof of Theorem 1.1

For the case $l = p$, Ichimura already constructed infinitely many imaginary quadratic extensions F over K such that the class number of F is not divisible by l (See Theorem 3 in [5]). So in this section we consider the case $l \neq p$. We can choose m to satisfy the following;

(i) m is a prime in $A^{(1)}$ with odd degree M,

(ii) $\chi_D(m) = -1$ for all imaginary fundamental discriminant D with degree $\leq N$.

Then from the class number relation in Theorem 2.1 and the condition (i), we have

$$\sum_{t \in A \atop \mu \in K^*/K^{*2}} H(t^2 - \mu m) = 2q^M.$$
Since $l \neq p$, there is a pair $(t, \mu) \in A \times K^*/K^{*2}$ such that
\[H(t^2 - \mu m) \not\equiv 0 \pmod{l}. \]

We can write
\[t^2 - \mu m = D_{t,\mu}f^2 \]
for some imaginary fundamental discriminant $D_{t,\mu}$ and conductor f. By the definition of h' and Hurwitz class number, we have
\[h(D_{t,\mu}) \not\equiv 0 \pmod{l}. \]

From the condition (ii), the degree of $D_{t,\mu} > N$. Since N can be arbitrarily large, there are infinitely many imaginary fundamental discriminants D whose class number $h(D)$ is not divisible by l. \hfill \Box

Acknowledgement The authors thank the referee for some helpful suggestions.

References

Department of Mathematics, Seoul National University
Seoul 151-747, Korea
E-mail: dhbyeon@math.snu.ac.kr