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Abstract. We shall show that the number of quadratic fields with absolute dis-
criminant ≤ x and noncyclic 5 or 7-class group is � x1/4 improving the existing
known bound � x

1
5
−ε for g = 5 and � x

1
7
−ε for g = 7 in [1].

1 Introduction

Under the assumption that ideal class group of quadratic field is quite rarely
noncyclic, Cohen and Lenstra [3] conjectured that the probability a given positive
integer g divides the class numbers of quadratic fields is positive. After Murty [8]
obtained the first quantitative result on the number of such quadratic fields, several
authors improved his result. The best known quantitative result for imaginary
quadratic fields is;

(Soundararajan [10]) If g ≥ 3 is an odd positive integer, then the
number of imaginary quadratic fields whose absolute discriminant is
≤ x and whose ideal class group has an element of order g is �
x

1
2
+ 1

g
−ε, for any ε > 0.

and for real quadratic fields is;
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(Yu [13]) If g ≥ 3 is an odd positive integer, then the number of real
quadratic fields whose absolute discriminant is ≤ x and whose ideal
class group has an element of order g is � x

1
g
−ε, for any ε > 0.

On the other hand, Yamamoto [12] proved that for any odd positive integer
g ≥ 3, there are infinitely many imaginary quadratic fields with ideal class group
having a subgroup isomorphic to Z/gZ × Z/gZ. For real quadratic fields, less
is known except the case g = 3, 5, 7 due to Craig [4] and Mestre [7]. The first
quantitative result for imaginary quadratic fields with noncyclic ideal class group
is

(Byeon [1]) If g ≥ 3 is an odd positive integer, then the number of
imaginary quadratic fields whose absolute discriminant ≤ x and ideal
class group having a subgroup isomorphic to Z/gZ×Z/gZ is � x1/g−ε,
for any ε > 0.

In this paper, applying Stewart and Top’s [11] result on square-free sieve to
Mestre’s [7] work on ideal class groups and elliptic curves, we shall improve this
result for g = 5 or 7.

Theorem 1.1 If g = 5 or 7, then the number of imaginary quadratic fields (or
real quadratic fields) whose absolute discriminant ≤ x and ideal class group having
a subgroup isomorphic to Z/gZ× Z/gZ is � x

1
4 .

Remark 1. Recently, using similar method we [2] improved the lower bound of
the number of real quadratic fields whose absolute discriminant is ≤ x and whose
class number is divisible by 5 or 7 to � x1/2.
Remark 2. For g = 3, recently Luca and Pacelli [5] improved the lower bound
of the number of quadratic fields with absolute discriminant ≤ x and noncyclic
3-class group to � x

1
2 by using a different method.

2 Ideal class groups and elliptic curves

First we recall Mestre’s [7] construction of quadratic fields with class number
divisible by 5 or 7 by using elliptic curves. Let A be an abelian variety defined
over Q with a point P defined over Q of order p where p is an odd prime. Let A′

denote the quotient of A divided by the subgroup generated by P and ϕ denote
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the isogeny A → A′. Let A
/Z be the Neron minimal model for A over Z. Then

there exists a group scheme A′
/Z with generic fiber A′ and an exact sequence:

0 → Z/pZ → A
/Z → A′

/Z → 0.

If K is an algebraic number field with ring of integers OK and ideal class group
ClK , one obtains the exact sequence:

0 → A′(OK)/ϕA(OK) → Hom(ClK , Z/pZ).

Thus the p-rank of ClK is bounded from below by the p-rank of A′(OK)/ϕA(OK).
Specially, to obtain quadratic fields with noncyclic p-class groups, we need two

distinct points Q1 and Q2 on A′ with coordinates in a quadratic field K such that
the points in the fibers ϕ−1(Q1) and ϕ−1(Q2) generate two independent unramified
cyclic extensions of degree p of K. Applying this to elliptic curves defined over Q
with a point P defined over Q of order p = 5 or 7, Mestre obtained the following
propositions.

Proposition 2.1 (Mestre [7]) For integers u, v, let

B2(u, v) = u2 + 4uv − 4v2,
B4(u, v) = v(u− v)(10u2 − 39uv + 20v2),
B6(u, v) = v(u− v)(4u4 − 56u3v + 124u2v2 − 155uv3 + 79v4),
D(x, u, v) = 4x3 + B2(u, v)x2 + 2B4(u, v)x + B6(u, v).

Suppose that u is even and v is odd. If x1, x2 are two different rational numbers
satisfying the following conditions:

(i) D(x1, u, v) = D(x2, u, v)
(ii) for any prime number l dividing u2 + 9uv − 11v2, x1, x2 are not congruent to
5u− 6v modulo l,
(iii) x1 6≡ x2 (mod 2) and for a given prime number q such that q does not divide
v(u− v)(u2 + 9uv − 11v2) and (D(x,u,v)

q ) 6= −1, x1 ≡ x2 (mod q),

then the ideal class group of quadratic field K = Q(
√

D(x, u, v)) has a subgroup
isomorphic to Z/5Z× Z/5Z.

Proposition 2.2 (Mestre [7]) For integers u, v, let

B2(u, v) = u4 − 6u3v + 3u2v2 + 2uv3 + v4,
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B4(u, v) = uv(u− v)(−10u5 − 10u4v + 61u3v2 − 81u2v3 + 59uv4 − 10v5),
B6(u, v) = uv(u − v)(−4u9 − 36u8v + 148u7v2 − 280u6v3 + 528u5v4 − 843u4v5 +
727u3v6 − 304u2v7 + 72uv8 − 4v9),
D(x, u, v) = 4x3 + B2(u, v)x2 + 2B4(u, v)x + B6(u, v).

Suppose that u ≡ 2 and v ≡ 1 (mod 3). If x1, x2 are two different rational numbers
satisfying the following conditions:

(i) D(x1, u, v) = D(x2, u, v)
(ii) for any prime number l dividing u3−8u2v+5uv2+v3, x1, x2 are not congruent
to −28u2 + 20uv + 3v2 modulo l
(iii) x1 6≡ x2 (mod 3) and for a given prime number q such that q does not divide
uv(u− v)(u3 − 8u2v + 5uv2 + v3) and (D(x,u,v)

q ) 6= −1, x1 ≡ x2 (mod q),

then the ideal class group of quadratic field K = Q(
√

D(x, u, v)) has a subgroup
isomorphic to Z/7Z× Z/7Z.

Remark. One cannot obtain similar propositions for p ≥ 11, since rational p-
torsion points on elliptic curves do not exist if p ≥ 11 (See [6]).

3 Square-free sieve

Now we recall some results on counting square-free values of binary forms. Let A,
B and M be integers with M ≥ 1. Let

F (U, V ) = arU
r + ar−1U

r−1V + · · ·+ a0V
r

be a binary form with integer coefficients and positive degree r. For any positive
real number X, let S(X) denote the number of square-free integers t with |t| ≤ X
for which there exist positive integers a, b and z with a ≡ A (mod M), b ≡ B (mod
M) and F (a, b) = tz2. Stewart and Top [11] obtained the following proposition.

Proposition 3.1 (Stewart and Top [11]) Let A, B and M be integers with M ≥ 1.
Let F be a binary form with integer coefficients, non-zero discriminant and degree
r ≥ 3. Suppose that the largest degree of an irreducible factor of F over Q is ≤ 6.
Then

S(X) � X
2
r .

Remark. In [11], S(X) is defined for integers a, b. But we easily see that nothing
is changed if S(X) is defined for positive integers a, b.
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4 Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemmas.

Lemma 4.1 Let m(t) be the polynomial of degree 8

m(t) = (t2 + t + 1)
× (2267524411729t6 + 6809864269707t5

+ 13573373036210t4 + 15772668841175t3

+ 13536917863610t2 + 6795282200667t

+ 2267524411729).

Suppose that t is a positive rational number satisfying

(i) t ≡ 0 (mod 139) and t ≡ 0 (mod 409),
(ii) t ≡ 0 (mod 2) and t ≡ 2 (mod 3).

Then the ideal class group of real quadratic field K = Q(
√

m(t)) has a subgroup
isomorphic to Z/5Z× Z/5Z.

Proof: If we take u = 234, v = 1 and q = 3 in Proposition 2.1, then we have

D(x, u, v) = 4x3 + 55688x2 + 250919564x + 2628731414009.

For a positive rational number t satisfying the conditions (i) (ii), let

x1(t) = −(5591t2 + 3400t + 3070)/(t2 + t + 1),
x2(t) = −(3070t2 + 2740t + 5261)/(t2 + t + 1).

Then we see that x1(t) and x2(t) satisfy the conditions in Proposition 2.1 and
D(x1(t), 234, 1) = D(x2(t), 234, 1) is equal to m(t) up to a square factor. Since the
coefficients of m(t) are positive, the quadratic field K = Q(

√
m(t)) is real. Thus

the lemma follows from Proposition 2.1. 2

Lemma 4.2 (Mestre [7] and Schoof [9]) Let m(t) be the polynomial of degree 8

m(t) = −(t2 + t + 1)(47t6 + 21t5 + 598t4 + 1561t3 + 1198t2 + 261t + 47).

Suppose that t is a positive rational number satisfying

(i) t ≡ 0 (mod 11),
(ii) t ≡ 0 (mod 2) and t ≡ 3 (mod 5).

Then the ideal class group of imaginary quadratic field K = Q(
√

m(t)) has a
subgroup isomorphic to Z/5Z× Z/5Z.
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Proof: If we take u = 0, v = 1, q = 5 and let

x1(t) = −(2t2 − 3t− 4)/(t2 + t + 1),
x2(t) = (4t2 + 5t− 1)/(t2 + t + 1),

then the lemma follows from Proposition 2.1. 2

Lemma 4.3 Let m(t) be the polynomial of degree 8

m(t) = (t2 + t + 1)
× (4784122454229365644086428380t6

+ 14355118862741206071671096300t5

+ 28715326988066299985437545491t4

+ 33496284204720226053383893282t3

+ 28701569487800754288378489691t2

+ 14349615862634987792847473980t

+ 4784122454229365644086428380).

Suppose that t is a positive rational number satisfying

(i) t ≡ 0 (mod 29), t ≡ 0 (mod 113), t ≡ 0 (mod 3793),
(ii) t ≡ 0 (mod 3) and t ≡ 0 (mod 11).

Then the ideal class group of real quadratic field K = Q(
√

m(t)) has a subgroup
isomorphic to Z/7Z× Z/7Z.

Proof: If we take u = −229, v = 1, q = 11 and let

x1(t) = −1/4 · (1065646690t2 + 983260749t + 837118325)/(t2 + t + 1),
x2(t) = −1/4 · (837118325t2 + 690975901t + 919504266)/(t2 + t + 1),

then the lemma follows from Proposition 2.2. 2

Lemma 4.4 Let m(t) be the polynomial of degree 8

m(t) = −(t2 + t + 1)
× (156793522148t6 + 287439299684t5

+ 451040463269t4 + 1032819649598t3

+ 1365746797069t2 + 653321833204t

+ 156793522148).

6



Suppose that t is a positive rational number satisfying

(i) t ≡ 0 (mod 617),
(ii) t ≡ 0 (mod 3) and t ≡ 11 (mod 17).

Then the ideal class group of imaginary quadratic field K = Q(
√

m(t)) has a
subgroup isomorphic to Z/7Z× Z/7Z.

Proof: If we take u = 5, v = −2, q = 17 and let

x1(t) = −1/4 · (669t2 + 9685t + 5354)/(t2 + t + 1)
x2(t) = −1/4 · (5354t2 + 1023t− 3662)/(t2 + t + 1).

then the lemma follows from Proposition 2.2. 2

Proof of Theorem 1.1: First we prove the theorem for the case of g = 5 and real
quadratic fields. Let A = 2 · 2 · 139 · 233 · 409, B = 1 and M = 2 · 3 · 139 · 233 · 409.
Let a, b be positive integers for which a ≡ A (mod M), b ≡ B (mod M). Then by
Lemma 4.1, the ideal class group of real quadratic field

K = Q(
√

m(a/b))

= Q(
√

b8m(a/b)),

where

b8m(a/b) = 2267524411729a8 + 9077388681436a7b

+ 22650761717646a6b2 + 36155906147092a5b3

+ 42882959740995a4b4 + 36104868905452a3b5

+ 22599724476006a2b6 + 9062806612396ab7

+ 2267524411729b8,

has a subgroup isomorphic to Z/5Z × Z/5Z. Let F (U, V ) := V 8m(U/V ) be the
binary form of degree 8. Then Proposition 3.1 implies that the number of square-
free integers t with 0 < t ≤ x for which there exist positive integers a, b and z
with a ≡ A (mod M), b ≡ B (mod M) and F (a, b) = tz2 is � x

1
4 and the theorem

follows. For the remaining cases, we can similarly prove them from Lemma 4.2,
4.3 and 4.4. 2
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