Quadratic fields with noncyclic 5 or 7-class groups

*‡

Dongho Byeon

Abstract. We shall show that the number of quadratic fields with absolute discriminant $\leq x$ and noncyclic 5 or 7-class group is $\gg x^{1/4}$ improving the existing known bound $\gg x^{\frac{1}{5}-\epsilon}$ for g=5 and $\gg x^{\frac{1}{7}-\epsilon}$ for g=7 in [1].

1 Introduction

Under the assumption that ideal class group of quadratic field is quite rarely noncyclic, Cohen and Lenstra [3] conjectured that the probability a given positive integer g divides the class numbers of quadratic fields is positive. After Murty [8] obtained the first quantitative result on the number of such quadratic fields, several authors improved his result. The best known quantitative result for imaginary quadratic fields is;

(Soundararajan [10]) If $g \geq 3$ is an odd positive integer, then the number of imaginary quadratic fields whose absolute discriminant is $\leq x$ and whose ideal class group has an element of order g is $\gg x^{\frac{1}{2} + \frac{1}{g} - \epsilon}$, for any $\epsilon > 0$.

and for real quadratic fields is;

^{*2000} Mathematics Subject Classification: 11R11, 11R29.

[†]This work was supported by KRF-2005-070-C00004.

[‡]The author also holds joint appointment in the Research Institute of Mathematics, Seoul National University.

(Yu [13]) If $g \geq 3$ is an odd positive integer, then the number of real quadratic fields whose absolute discriminant is $\leq x$ and whose ideal class group has an element of order g is $\gg x^{\frac{1}{g}-\epsilon}$, for any $\epsilon > 0$.

On the other hand, Yamamoto [12] proved that for any odd positive integer $g \geq 3$, there are infinitely many imaginary quadratic fields with ideal class group having a subgroup isomorphic to $\mathbb{Z}/g\mathbb{Z} \times \mathbb{Z}/g\mathbb{Z}$. For real quadratic fields, less is known except the case g = 3, 5, 7 due to Craig [4] and Mestre [7]. The first quantitative result for imaginary quadratic fields with noncyclic ideal class group is

(Byeon [1]) If $g \geq 3$ is an odd positive integer, then the number of imaginary quadratic fields whose absolute discriminant $\leq x$ and ideal class group having a subgroup isomorphic to $\mathbb{Z}/g\mathbb{Z} \times \mathbb{Z}/g\mathbb{Z}$ is $\gg x^{1/g-\epsilon}$, for any $\epsilon > 0$.

In this paper, applying Stewart and Top's [11] result on square-free sieve to Mestre's [7] work on ideal class groups and elliptic curves, we shall improve this result for g = 5 or 7.

Theorem 1.1 If g = 5 or 7, then the number of imaginary quadratic fields (or real quadratic fields) whose absolute discriminant $\leq x$ and ideal class group having a subgroup isomorphic to $\mathbb{Z}/g\mathbb{Z} \times \mathbb{Z}/g\mathbb{Z}$ is $\gg x^{\frac{1}{4}}$.

Remark 1. Recently, using similar method we [2] improved the lower bound of the number of real quadratic fields whose absolute discriminant is $\leq x$ and whose class number is divisible by 5 or 7 to $\gg x^{1/2}$.

Remark 2. For g=3, recently Luca and Pacelli [5] improved the lower bound of the number of quadratic fields with absolute discriminant $\leq x$ and noncyclic 3-class group to $\gg x^{\frac{1}{2}}$ by using a different method.

2 Ideal class groups and elliptic curves

First we recall Mestre's [7] construction of quadratic fields with class number divisible by 5 or 7 by using elliptic curves. Let A be an abelian variety defined over $\mathbb Q$ with a point P defined over $\mathbb Q$ of order p where p is an odd prime. Let A' denote the quotient of A divided by the subgroup generated by P and φ denote

the isogeny $A \to A'$. Let $A_{/\mathbb{Z}}$ be the Neron minimal model for A over \mathbb{Z} . Then there exists a group scheme $A'_{/\mathbb{Z}}$ with generic fiber A' and an exact sequence:

$$0 \to \mathbb{Z}/p\mathbb{Z} \to A_{/\mathbb{Z}} \to A'_{/\mathbb{Z}} \to 0.$$

If K is an algebraic number field with ring of integers O_K and ideal class group Cl_K , one obtains the exact sequence:

$$0 \to A'(O_K)/\varphi A(O_K) \to \operatorname{Hom}(\operatorname{Cl}_K, \mathbb{Z}/p\mathbb{Z}).$$

Thus the p-rank of Cl_K is bounded from below by the p-rank of $A'(O_K)/\varphi A(O_K)$. Specially, to obtain quadratic fields with noncyclic p-class groups, we need two distinct points Q_1 and Q_2 on A' with coordinates in a quadratic field K such that the points in the fibers $\varphi^{-1}(Q_1)$ and $\varphi^{-1}(Q_2)$ generate two independent unramified cyclic extensions of degree p of K. Applying this to elliptic curves defined over $\mathbb Q$ with a point P defined over $\mathbb Q$ of order p=5 or 7, Mestre obtained the following propositions.

Proposition 2.1 (Mestre [7]) For integers u, v, let

$$\begin{split} B_2(u,v) &= u^2 + 4uv - 4v^2, \\ B_4(u,v) &= v(u-v)(10u^2 - 39uv + 20v^2), \\ B_6(u,v) &= v(u-v)(4u^4 - 56u^3v + 124u^2v^2 - 155uv^3 + 79v^4), \\ D(x,u,v) &= 4x^3 + B_2(u,v)x^2 + 2B_4(u,v)x + B_6(u,v). \end{split}$$

Suppose that u is even and v is odd. If x_1 , x_2 are two different rational numbers satisfying the following conditions:

- (i) $D(x_1, u, v) = D(x_2, u, v)$
- (ii) for any prime number l dividing $u^2 + 9uv 11v^2$, x_1 , x_2 are not congruent to 5u 6v modulo l,
- (iii) $x_1 \not\equiv x_2 \pmod 2$ and for a given prime number q such that q does not divide $v(u-v)(u^2+9uv-11v^2)$ and $(\frac{D(x,u,v)}{q}) \not= -1, \ x_1 \equiv x_2 \pmod q$,

then the ideal class group of quadratic field $K = \mathbb{Q}(\sqrt{D(x, u, v)})$ has a subgroup isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Proposition 2.2 (Mestre [7]) For integers u, v, let

$$B_2(u,v) = u^4 - 6u^3v + 3u^2v^2 + 2uv^3 + v^4,$$

$$B_4(u,v) = uv(u-v)(-10u^5 - 10u^4v + 61u^3v^2 - 81u^2v^3 + 59uv^4 - 10v^5),$$

$$B_6(u,v) = uv(u-v)(-4u^9 - 36u^8v + 148u^7v^2 - 280u^6v^3 + 528u^5v^4 - 843u^4v^5 + 727u^3v^6 - 304u^2v^7 + 72uv^8 - 4v^9),$$

$$D(x,u,v) = 4x^3 + B_2(u,v)x^2 + 2B_4(u,v)x + B_6(u,v).$$

Suppose that $u \equiv 2$ and $v \equiv 1 \pmod{3}$. If x_1 , x_2 are two different rational numbers satisfying the following conditions:

- (i) $D(x_1, u, v) = D(x_2, u, v)$
- (ii) for any prime number l dividing $u^3 8u^2v + 5uv^2 + v^3$, x_1 , x_2 are not congruent to $-28u^2 + 20uv + 3v^2$ modulo l
- (iii) $x_1 \not\equiv x_2 \pmod 3$ and for a given prime number q such that q does not divide $uv(u-v)(u^3-8u^2v+5uv^2+v^3)$ and $(\frac{D(x,u,v)}{q}) \neq -1$, $x_1 \equiv x_2 \pmod q$,

then the ideal class group of quadratic field $K = \mathbb{Q}(\sqrt{D(x,u,v)})$ has a subgroup isomorphic to $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Remark. One cannot obtain similar propositions for $p \ge 11$, since rational ptorsion points on elliptic curves do not exist if $p \ge 11$ (See [6]).

3 Square-free sieve

Now we recall some results on counting square-free values of binary forms. Let A, B and M be integers with $M \ge 1$. Let

$$F(U, V) = a_r U^r + a_{r-1} U^{r-1} V + \dots + a_0 V^r$$

be a binary form with integer coefficients and positive degree r. For any positive real number X, let S(X) denote the number of square-free integers t with $|t| \leq X$ for which there exist positive integers a, b and z with $a \equiv A \pmod{M}$, $b \equiv B \pmod{M}$ and $F(a,b) = tz^2$. Stewart and Top [11] obtained the following proposition.

Proposition 3.1 (Stewart and Top [11]) Let A, B and M be integers with $M \ge 1$. Let F be a binary form with integer coefficients, non-zero discriminant and degree $r \ge 3$. Suppose that the largest degree of an irreducible factor of F over \mathbb{Q} is ≤ 6 . Then

$$S(X) \gg X^{\frac{2}{r}}.$$

Remark. In [11], S(X) is defined for integers a, b. But we easily see that nothing is changed if S(X) is defined for positive integers a, b.

4 Proof of Theorem 1.1

To prove Theorem 1.1, we need the following lemmas.

Lemma 4.1 Let m(t) be the polynomial of degree 8

$$m(t) = (t^{2} + t + 1)$$

$$\times (2267524411729t^{6} + 6809864269707t^{5} + 13573373036210t^{4} + 15772668841175t^{3} + 13536917863610t^{2} + 6795282200667t + 2267524411729).$$

Suppose that t is a positive rational number satisfying

- (i) $t \equiv 0 \pmod{139}$ and $t \equiv 0 \pmod{409}$,
- (ii) $t \equiv 0 \pmod{2}$ and $t \equiv 2 \pmod{3}$.

Then the ideal class group of real quadratic field $K = \mathbb{Q}(\sqrt{m(t)})$ has a subgroup isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Proof: If we take u = 234, v = 1 and q = 3 in Proposition 2.1, then we have $D(x, u, v) = 4x^3 + 55688x^2 + 250919564x + 2628731414009$.

For a positive rational number t satisfying the conditions (i) (ii), let

$$x_1(t) = -(5591t^2 + 3400t + 3070)/(t^2 + t + 1),$$

 $x_2(t) = -(3070t^2 + 2740t + 5261)/(t^2 + t + 1).$

Then we see that $x_1(t)$ and $x_2(t)$ satisfy the conditions in Proposition 2.1 and $D(x_1(t), 234, 1) = D(x_2(t), 234, 1)$ is equal to m(t) up to a square factor. Since the coefficients of m(t) are positive, the quadratic field $K = \mathbb{Q}(\sqrt{m(t)})$ is real. Thus the lemma follows from Proposition 2.1.

Lemma 4.2 (Mestre [7] and Schoof [9]) Let m(t) be the polynomial of degree 8 $m(t) = -(t^2 + t + 1)(47t^6 + 21t^5 + 598t^4 + 1561t^3 + 1198t^2 + 261t + 47).$

Suppose that t is a positive rational number satisfying

(i) $t \equiv 0 \pmod{11}$, (ii) $t \equiv 0 \pmod{2}$ and $t \equiv 3 \pmod{5}$.

Then the ideal class group of imaginary quadratic field $K = \mathbb{Q}(\sqrt{m(t)})$ has a subgroup isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.

Proof: If we take u = 0, v = 1, q = 5 and let

$$x_1(t) = -(2t^2 - 3t - 4)/(t^2 + t + 1),$$

 $x_2(t) = (4t^2 + 5t - 1)/(t^2 + t + 1),$

then the lemma follows from Proposition 2.1.

Lemma 4.3 Let m(t) be the polynomial of degree 8

$$\begin{array}{lll} m(t) &=& (t^2+t+1) \\ &\times & (4784122454229365644086428380t^6 \\ &+& 14355118862741206071671096300t^5 \\ &+& 28715326988066299985437545491t^4 \\ &+& 33496284204720226053383893282t^3 \\ &+& 28701569487800754288378489691t^2 \\ &+& 14349615862634987792847473980t \\ &+& 4784122454229365644086428380). \end{array}$$

Suppose that t is a positive rational number satisfying

(i)
$$t \equiv 0 \pmod{29}$$
, $t \equiv 0 \pmod{113}$, $t \equiv 0 \pmod{3793}$, (ii) $t \equiv 0 \pmod{3}$ and $t \equiv 0 \pmod{11}$.

Then the ideal class group of real quadratic field $K = \mathbb{Q}(\sqrt{m(t)})$ has a subgroup isomorphic to $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Proof: If we take u = -229, v = 1, q = 11 and let

$$x_1(t) = -1/4 \cdot (1065646690t^2 + 983260749t + 837118325)/(t^2 + t + 1),$$

 $x_2(t) = -1/4 \cdot (837118325t^2 + 690975901t + 919504266)/(t^2 + t + 1),$

then the lemma follows from Proposition 2.2.

Lemma 4.4 Let m(t) be the polynomial of degree 8

$$m(t) = -(t^2 + t + 1)$$

$$\times (156793522148t^6 + 287439299684t^5 + 451040463269t^4 + 1032819649598t^3 + 1365746797069t^2 + 653321833204t + 156793522148).$$

Suppose that t is a positive rational number satisfying

(i)
$$t \equiv 0 \pmod{617}$$
,
(ii) $t \equiv 0 \pmod{3}$ and $t \equiv 11 \pmod{17}$.

Then the ideal class group of imaginary quadratic field $K = \mathbb{Q}(\sqrt{m(t)})$ has a subgroup isomorphic to $\mathbb{Z}/7\mathbb{Z} \times \mathbb{Z}/7\mathbb{Z}$.

Proof: If we take u = 5, v = -2, q = 17 and let

$$x_1(t) = -1/4 \cdot (669t^2 + 9685t + 5354)/(t^2 + t + 1)$$

 $x_2(t) = -1/4 \cdot (5354t^2 + 1023t - 3662)/(t^2 + t + 1).$

then the lemma follows from Proposition 2.2.

Proof of Theorem 1.1: First we prove the theorem for the case of g = 5 and real quadratic fields. Let $A = 2 \cdot 2 \cdot 139 \cdot 233 \cdot 409$, B = 1 and $M = 2 \cdot 3 \cdot 139 \cdot 233 \cdot 409$. Let a, b be positive integers for which $a \equiv A \pmod{M}$, $b \equiv B \pmod{M}$. Then by Lemma 4.1, the ideal class group of real quadratic field

$$K = \mathbb{Q}(\sqrt{m(a/b)})$$
$$= \mathbb{Q}(\sqrt{b^8 m(a/b)}),$$

where

$$\begin{array}{lll} b^8 m(a/b) & = & 2267524411729a^8 + 9077388681436a^7b \\ & + & 22650761717646a^6b^2 + 36155906147092a^5b^3 \\ & + & 42882959740995a^4b^4 + 36104868905452a^3b^5 \\ & + & 22599724476006a^2b^6 + 9062806612396ab^7 \\ & + & 2267524411729b^8, \end{array}$$

has a subgroup isomorphic to $\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$. Let $F(U,V) := V^8 m(U/V)$ be the binary form of degree 8. Then Proposition 3.1 implies that the number of square-free integers t with $0 < t \le x$ for which there exist positive integers a, b and z with $a \equiv A \pmod{M}$, $b \equiv B \pmod{M}$ and $F(a,b) = tz^2$ is $\gg x^{\frac{1}{4}}$ and the theorem follows. For the remaining cases, we can similarly prove them from Lemma 4.2, 4.3 and 4.4.

Acknowledgement The author would like to thank the referee for correcting an error in Lemma 4.1, finding a mistake in Lemma 4.4 and making many valuable suggestions.

References

- [1] D. Byeon, Imaginary quadratic fields with noncyclic ideal class groups, Ramnujan J., **11** (2006), 159–163.
- [2] D. Byeon, Real quadratic fields with class number divisible by 5 or 7, Manuscripta Math., **120** (2006), 211–215.
- [3] H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields in: Number Theory (Noordwijkerhout 1983), Lecture Notes in Math. 1068, Springer-Verlag, New York, 33–62.
- [4] M. Craig, A construction for irregular discriminants, Osaka J. Math, 14 (1977), 365–402.
- [5] F. Luca and A. Pacelli, Class groups of quadratic fields of 3-rank at least 2: Effective bounds, preprint.
- [6] B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math., No. 47 (1978), 33–186.
- [7] J.-F. Mestre, Courbes elliptiques et groupes de classes d'idéaux de certains corps quadratiques, J. Reine Angew. Math. **343** (1983), 23–35.
- [8] M. R. Murty, Exponents of class groups of quadratic fields, in "Topics in Number Theory", 229–239, Mathematical Applications, vol. 467, Kluwer, 1999.
- [9] R. J. Schoof, Class groups of complex quadratic fields, Math. of Computation, 4 (1983), 295–302.
- [10] K. Soundararajan, Divisibility of class numbers of imaginary quadratic fields,
 J. London Math. Soc., 61 (2000), 681–690.
- [11] C. L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of binary forms, J. of Amer. Math. Soc., 8 (1995), 943–973.
- [12] Y. Yamamoto, On ramified Galois extensions of quadratic number fields, Osaka J. Math. 7 (1970), 57–76
- [13] G. Yu, A note on the divisibility of class numbers of real quadratic fields, J. Number Theory, **97** (2002), 35–44.

Department of Mathematics Seoul National University Seoul 151-747, Korea E-mail: dhbyeon@snu.ac.kr