ELLIPTIC CURVES OF RANK 1 SATISFYING THE
3-PART OF THE BIRCH AND SWINNERTON-DYER
CONJECTURE

DONGHO BYEON

Abstract. Let E be an elliptic curve over Q of conductor N and K be an imaginary
quadratic field, where all prime divisors of N split. If the analytic rank of E over
K is equal to 1, then the Gross and Zagier formula for the value of the derivative of
the L-function of E over K, when combined with the Birch and Swinnerton-Dyer
conjecture, gives a conjectural formula for the order of the Shafarevich-Tate group
of E over K. In this paper, we show that there are infinitely many elliptic curves
E such that for a positive proportion of imaginary quadratic fields K, the 3-part

of the conjectural formula is true.

1. INTRODUCTION

Let E be an elliptic curve over Q of conductor N, Xy(N) the modular
curve of level N and ¢ : Xo(N) — E a surjective morphism. Let K be
an imaginary quadratic field with fundamental discriminant D, where all
prime divisors of N split and CI(K) the ideal class group of K. Let O
be the ring of integers of K and a an ideal of O . Then we can define the
Heegner point on Xo(N) with coordinates j(a), j(n"a), where (N) =n-n”

in K and 7 is the complex conjugation. We denote it by

(OKv n, [a]),

where [a] denotes the ideal class of K containing a. Following Birch, Stephens

[B-S] and Gross [Gr], let
PE(D,1,1) = > ¢((Or,m,[a))) — > 6((Ox,m, [a))7).
[a]eCl(K) [a]eCl(K)
Then we have
Pi(Dg,1,1) € B(K).
Kolyvagin [Ko| proves that if Pj;(Dg,1,1) has infinite order, then E(K)

has rank 1 and the Shafarevich-Tate group III(E/K) of E over K is finite.
1
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Gross and Zagier [G-Z] obtain a formula for the value of the derivative
of the L-function of E over K in terms of the height of P} (Dg,1,1). This
formula, when combined with the conjecture of Birch and Swinnerton-Dyer,

gives the following conjectural formula for the order of III(E/K).

Conjecture Assume that Di # —3, —4. If Pj;(Dg,1,1) has infinite order,
then

[E(K) : ZP},(Dg, 1, 1)])2
¢ Hq|N Cq 7
where ¢ is the Manin constant of the modular parametrization ¢ of E and

cq, where q|N is prime, is the index in E(Q,) of the subgroup Eo(Q,) of

mi(e/K)| = (

points which have nonsingular reduction modulo q.

In this paper, we construct infinitely many elliptic curves E such that
for a positive portion of imaginary quadratic fields K, Pj(Dg,1,1) has
infinite order and the order of the 3-primary part of III(E/K) satisfies the

conjectural formula. More precisely we have the following theorem.

Theorem 1.1. There are infinitely many elliptic curves E of conductor

N = pq where p and q are distinct primes, with distinct j-invariants such
1 Pq - - -

that for at least g - (SIeEy] of imaginary quadratic fields K, P;(Dg,1,1)

has infinite order and

ords|II[(B/K)| = 20rd3([E(K)  LPp(Dic, 1. 1)]) —0.
c- Hq|N Cq

In [Ja], James constructs some finite number of elliptic curves E such
that for a positive proportion of imaginary quadratic fields K, F has ana-
lytic rank zero over K and in [Jal], he proves that these elliptic curves E
satisfy a conjectural formula, following from the Birch and Swinnerton-Dyer
conjecture, for the order of III(E/K) at 3. Recently we [B-J-K] found infin-
itely many elliptic curves E such that for a positive proportion of imaginary
quadratic fields K, F has analytic rank one over K. This gives evidence for
a conjecture of Goldfeld [Go] on the analytic rank of E over K. However,
for the order of III(E/K) when E has analytic rank one over K, much less is
known except the first example in this direction E = X(11) for the 5-part
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of the Shafarevich-Tate group, which is studied by Gross [Gr] and Mazur
[Mal].

2. PRELIMINARIES

Let E be an elliptic curve over Q of conductor N. Let F' be the associated
newform, and for d|N let wy = £1 be such that WyF = wyF', where Wy is
the Atkin-Lehner involution.

Let p and ¢ be distinct prime numbers such that p # 3 and ¢ = —1 (mod
9). Let EP? be an optimal elliptic curve over Q of conductor pq satisfying
the following conditions:

(i) wp = —1, i.e, EP? has split multiplicative reduction at p and w, = 1, i.e,
EPY has non-split multiplicative reduction at q.
(ii) EP? has a Q-rational 3-torsion point.
Such a curve exists thanks to [p. 75, B-J-K].
In [Theorem 1.3 and Proposition 3.1, B-J-K], we prove the following

proposition.

Proposition 2.1. Let K be an imaginary quadratic field satisfying

(i) p and q split in K,

(ii) 3 does not divide the class number of K,

(iii) EP? has no other K -rational torsion points besides Q-rational 3-torsion
points.

Then the Heegner point P (Dg,1,1) € EPY(K) has infinite order.

Now we recall the result of Nakagawa and Horie [N-H] which is a refine-
ment of the result of Davenport and Heilbronn [D-H]. Let m and N be two

positive integers satisfying the following condition:

(%) If an odd prime number p is a common divisor of m and
N, then p? divides N but not m. Further if N is even, then
(i) 4 divides N and m =1 (mod 4), or (ii) 16 divides N and
m =8 or 12 (mod 16).

For any positive real number X > 0, we denote by by S_(X) the set of

negative fundamental discriminants D > —X, and put

S_(X,m,N):={D e S_(X)|D =m(mod N)}.
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Proposition 2.2. (Nakagawa and Horie) Let D < 0 be a negative fun-
damental discriminant and r3(D) be the 3-rank of the class group of the
imaginary quadratic field @(\/T)) Then for any two positive integers m, N
satisfying (*),
LD DI VA DI T
DeS_(X,m,N) DeS_(X,m,N)

From Proposition 2.2 and the following fact

POREE SLZE TN DS R DR S

DeS_(X,m,N) DeS_(X,m,N) DeS_(X,m,N)
r3(D)=0 r3(D)=0
< >, e
DeS_(X,m,N)

we can easily obtain the following lemma.

Lemma 2.3. Let D < 0 be a negative fundamental discriminant and h(D)
the class number of the imaginary quadratic field Q(v/D). Then for any two
positive integers m, N satisfying (x),

g 4D € S-(X.m,N) [A(D) £0 (mod )} _ 1
s 6S_(X,m, N) =9

3. 3-PART OF THE SHAFAREVICH-TATE GROUP

Proposition 3.1. Let K(# Q(v/=3)) be an imaginary quadratic field sat-
isfying

(i) p and q split in K,

(7i) 3 does not divide the class number of K,

(iii) EP1 has no other K-rational 3-torsion points besides Q-rational 3-

torsion points.

Then 111(EP?/K)[3] = 0.

Proof: Since EP? has a (Q-rational 3-torsion point, the composition fac-
tors of EP4[3] are Z/3Z and us, so from the long exact sequence of Galois

cohomology, we have the following exact sequence

0 — HY(Ggx, Z/3Z) — H' (G i, BP[3]) — H (G i, p3)- (1)
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For a finite set S of places of K, we define

Hl(GR/K,M; S):={¢e€ HI(GR/K,M) | is unramified outside S'}.
Then from (1), we have the following exact sequence
0— HYGgx,L/3L; S) — H' Gk, EP[3]; S) — H'(Gg i, 1135 S)- (2)

Let SG®)(EP1/K) be the 3-Selmer group of EP? over K. From [Corollary
4.4 Ch X, Si], we know that

SO (EM/K) C HY (G g, E"[3]; S1)

where S is the set of places of K containing the infinite place and the finite
places dividing 3pq.

Let v3 be a place of K which divides 3. From the condition (iii), EP?(K)[3]
injects in E~,,3, where EN,,3 is the reduction of £ modulo v3 (see [Example 6.1.1,
Ch 1V, Si]). This implies that S®)(EPI/K) is unramified at v, since EP4/K
has good reduction at v3 (see [proof of Proposition 4.1, Ch VII, Si]). So we
have that

SO (EM/K) € HY (G s EP[3]; S2)

where Ss is the set of places of K containing the infinite place and the finite
places dividing pq.

Let ¢, be the index in E?4(Q,) of the subgroup Ef?(Q,) of points which
have nonsingular reduction modulo ¢q. Then ¢, is equal to 1 or 2 because
wg = 1 (see [Theorem 14.1 (d) Appendix C, Si]). From [Proposition 3.2,
S-S], we know that

SO(EM/K) C H (G B33 S9)

where Sj3 is the set of places of K containing the infinite place and the finite
places dividing p.

Let 0% :={a € K|v(a) >0 for all places v of K, v ¢ S} be the ring of
S-integers of K and CZS(K) the S-ideal class group of K it is the factor
group of the ideal class group CI(K) of K by its subgroup generated by
classes of primes in S. We note that the order of CI°(K) divides the class

number of K. By class field theory, we have

H'(Gg /. Z/3L; S) = Hom(Cl5 (K), Z/31).



6 DONGHO BYEON

So if 3 does not divide the class number of K, then HI(G[{/K, ZJ3Z; S)=0.

From (2), we have the following exact sequence
0— H' (Gg/x, EP[3]; S) = H'(Ggyxs 1135 S)-
Thus we have that
SO(EM/K) € H' Gtz Ss).
Since
HY (G, p3; S3) = {b € K*/K*? |ord, (b) = 0 (mod 3) for all v & S},

we have that
dim3S®) (EP1/K) < 2,

where dimgz denotes the dimension of an Fs-vector space.

From Proposition 2.1, we know that if K satisfies the above three condi-
tions, then the Heegner point Pj,(Dg,1,1) € EPI(K) has infinite order and
EP1(K) has rank 1.

EPU(K)/3EPM(K) 2 (Z @ EPYK )ior)/ 3(Z & EPY(K )ior) = Z./37 @ 7./ 3.
Thus from the following exact sequence
0 — EPY(K)/3EPY(K) — S®)(EP1/K) — III(EP/K)[3] — 0.
we have that

SCNEP/K) = 7./3Z & 7./37 and 1IL(EP/K)[3] = 0.

4. PROOF OF THEOREM 1.1

Proposition 4.1. Let K be an imaginary quadratic field satisfying

(i) p and q split in K,

(ii) 3 does not divide the class number of K,

(111) EP? has no other K -rational 3-torsion point than Q-rational 3-torsion

points.
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Let j(EP9) be the j-invariant of EP! and v, be a finite place dividing p.
Assume that ords(ord,, (j(EP9))) = 1. Then
EPY(K) : ZP;(Dg,1,1
Ords([ (K) : ZPg (D, 1, )]) _0

C:Cp-Cq

Proof: In [Proposition 3.1, B-J-K], to prove that Pj(Dg,1,1) € EPY(K)
has infinite order, we show that P;(Dx, 1, 1) is not trivial in B (Q)/3ET (Q),
where E%QK is the quadratic twist of EP?. We note that E%qK (Q) is the (-
)-eigenspace of o # 1 in Gal(K/Q) acting on EPY(K). We also note that
rank EP(Q) = 0, since rank B} (Q) 4 rank EP(Q) = rank EM(K) = 1.
This implies that

ords([EPY(K) : ZPg(Dk,1,1)]) = ords| EP!(K )tor| = 1.

Since EP? is optimal and its conductor pq is square-free, ¢ = 1 (See [Corollary
4.1, Ma}). And ords(c,) = 1 because w, = —1 and ords(ord,, (j(£P9))) = 1
(See [Corollary 15.2.1 Appendix C, Si]). And ¢; = 1 or 2 because wy = 1.
So we have that

ords(c-cp-cq) =1

and we complete the proof. O

Proof of Theorem 1.1: Let E' : y* + a1xy + asy = 3, a1, a3 € Z. Then the
point (0,0) € E’(Q) is a 3-torsion point. In [B-J-K], using a result of the
binary Goldbach problem for polynomials, we show that there are infinitely

3 a1,a3 € Z of discriminant

many elliptic curves E'9 : y? + ajzy + agy = x
A = a%(a:{’ — 27a3) = p3q and conductor N = pq, where p,q are different
primes such that p # 3, ¢ = —1 (mod 9), more precisely, ¢ = —1 (mod
27) (see [Proof of Theorem 1.1, B-J-K]) and w, = —1, wy = 1. Let EP? be
the optimal elliptic curve in the isogeny class of E'P4. Since EP? has also
a Q-rational 3-torsion point by [Du] [Va], EP? can be also defined by the
Weierstrass equation of the form EP? : y? 4+ bizy + bsy = a2, by, b3 € Z of
discriminant A = b3 (b3 —27b3) (see [Table 3, Ku]). By a change of variables,
we can assume that by,bs € Z, bg > 0 and there is no integer v such that
ulby and u3|b3. Then we can see that EP? : y? + bizy + byy = 23 is a
minimal Weierstrass equation for EP¢ by checking the valuation of A and

Cq = bl<b13 — 24b3).
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If a prime ¢ divides b; and bg, then EP? has additive reduction at t. So we
can assume that by and bs are relatively prime. Then for every prime factors
t of b3, EP? has split multiplicative reduction at t, for every prime factors

= —1 (mod 3) of (b3 — 27b3), EP? has non-split multiplicative reduction
at t, and for every prime factors ¢ = 1 (mod 3) of (b3 — 27b3), EP has
split multiplicative reduction at ¢ because the slopes of the tangent lines at
the node (—b%/9,b3/27) € EP(IF,) are (—3b; + b11/—3)/6. So the condition
that EP? has split multiplication at p, i.e, w, = —1 and EP? has non-split
multiplication at ¢, i.e, w; = 1 implies that b3 = p” and b3 — 27b3 = +¢°.

If

b3 (b1 — 24b3)3

ords(ord,, (j(£?))) = ords(ord,, ( b3 (3 — 27bs)

) = ordg(ordyp(bgg’)) > 1,
then b3 = p* and b3 — 27bg = 4¢° is factored by
b3 — (3p" )% = (by — 3p" ) (b3 + 3bip"™ + 9p*").

We can see that by — 3p” and b2+ 3b1p" + 9p?"" are relatively prime. So
by — 3p” = +1 or b? + 3b1p” + 9p* = +1. But b2+ 3b1p” + 9p?" can
not be equal to 1. Suppose that b; — 3p’"/ = 41. Then b > 0 and
b2 + 3b1p” 4+ 9p* > 0. If by — 3p” =1, then

bl — 27by = (3p" +1)° = 21p"" = 27p*" + 9" +1 - 27" = ¢°.

If s is odd, then the left hand side of this equation is congruent to 1 modulo
9, but the right hand side of this equation is congruent to —1 modulo 9. So

it is impossible. If s is even, then we have

p¥ 4" 3 - = (¢° —1)/2T,

and (¢° — 1)/27 is an integer, since ¢ = —1 (mod 27). So p should be equal
to 3, but it is contraction to the condition of EP4. Thus by — 3p” can not
be equal to 1. Similarly, we can show that by — Sp’"/ can not be equal to —1.
Thus ordz(ord,, (j(EP?))) should be equal to 1.

So for the imaginary quadratic field K satisfying the conditions in Propo-

sition 3.1 and Proposition 4.1, we have that

[EP(K) : ZPj,(Dk, 1, 1)]) = 0.

C-Cp-Cq

ords|III(EP /)| = 20rd3<
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Now we compute the number of imaginary quadratic fields K satisfying

the conditions in Proposition 3.1 and Proposition 4.1. It is known that when

X — o0,
3X
(X))~ —
1S (X) ~ =5
3X q
S* X? ?N ~ )

where p runs over all the prime divisors of N and g =4 if p=2,¢q=1p
otherwise, and ¢ is the Euler function (See [Proposition 2, [N-H]). Thus
from Lemma 2.3, we obtain the following estimates.
H{D € S_(X) | h(D) # 0 (mod 3), (2) = 1 and (2) =1}
lim inf P 4
X —o00 ﬂS_ (X)
1 Pq

8 (p+1)(g+1)

And we know that there are only finitely many imaginary quadratic fields K
such that F(K) has other K-rational 3-torsion point besides QQ-rational 3-
. . . . l . pq
torsion points (see [Exercise 8.17, Si]). So at least g SN CESY)
quadratic fields K satisfy the conditions in Proposition 3.1 and Proposition

of imaginary

4.1. Thus we complete the proof of Theorem 1.1. O
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