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Abstract. Let E be an elliptic curve over Q of conductor N and K be an imaginary

quadratic field, where all prime divisors of N split. If the analytic rank of E over

K is equal to 1, then the Gross and Zagier formula for the value of the derivative of

the L-function of E over K, when combined with the Birch and Swinnerton-Dyer

conjecture, gives a conjectural formula for the order of the Shafarevich-Tate group

of E over K. In this paper, we show that there are infinitely many elliptic curves

E such that for a positive proportion of imaginary quadratic fields K, the 3-part

of the conjectural formula is true.

1. Introduction

Let E be an elliptic curve over Q of conductor N , X0(N) the modular

curve of level N and φ : X0(N) → E a surjective morphism. Let K be

an imaginary quadratic field with fundamental discriminant DK , where all

prime divisors of N split and Cl(K) the ideal class group of K. Let OK

be the ring of integers of K and a an ideal of OK . Then we can define the

Heegner point on X0(N) with coordinates j(a), j(nτa), where (N) = n · nτ

in K and τ is the complex conjugation. We denote it by

(OK ,n, [a]),

where [a] denotes the ideal class of K containing a. Following Birch, Stephens

[B-S] and Gross [Gr], let

P ∗
E(DK , 1, 1) :=

∑
[a]∈Cl(K)

φ((OK ,n, [a])) −
∑

[a]∈Cl(K)

φ((OK ,n, [a])τ ).

Then we have

P ∗
E(DK , 1, 1) ∈ E(K).

Kolyvagin [Ko] proves that if P ∗
E(DK , 1, 1) has infinite order, then E(K)

has rank 1 and the Shafarevich-Tate group III(E/K) of E over K is finite.
1
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Gross and Zagier [G-Z] obtain a formula for the value of the derivative

of the L-function of E over K in terms of the height of P ∗
E(DK , 1, 1). This

formula, when combined with the conjecture of Birch and Swinnerton-Dyer,

gives the following conjectural formula for the order of III(E/K).

Conjecture Assume that DK 6= −3, −4. If P ∗
E(DK , 1, 1) has infinite order,

then

|III(E/K)| =
( [E(K) : ZP ∗

E(DK , 1, 1)]
c ·

∏
q|N cq

)2
,

where c is the Manin constant of the modular parametrization φ of E and

cq, where q|N is prime, is the index in E(Qq) of the subgroup E0(Qq) of

points which have nonsingular reduction modulo q.

In this paper, we construct infinitely many elliptic curves E such that

for a positive portion of imaginary quadratic fields K, P ∗
E(DK , 1, 1) has

infinite order and the order of the 3-primary part of III(E/K) satisfies the

conjectural formula. More precisely we have the following theorem.

Theorem 1.1. There are infinitely many elliptic curves E of conductor

N = pq where p and q are distinct primes, with distinct j-invariants such

that for at least 1
8 ·

pq
(p+1)(q+1) of imaginary quadratic fields K, P ∗

E(DK , 1, 1)

has infinite order and

ord3|III(E/K)| = 2ord3

( [E(K) : ZP ∗
E(DK , 1, 1)]

c ·
∏

q|N cq

)
= 0.

In [Ja], James constructs some finite number of elliptic curves E such

that for a positive proportion of imaginary quadratic fields K, E has ana-

lytic rank zero over K and in [Ja1], he proves that these elliptic curves E

satisfy a conjectural formula, following from the Birch and Swinnerton-Dyer

conjecture, for the order of III(E/K) at 3. Recently we [B-J-K] found infin-

itely many elliptic curves E such that for a positive proportion of imaginary

quadratic fields K, E has analytic rank one over K. This gives evidence for

a conjecture of Goldfeld [Go] on the analytic rank of E over K. However,

for the order of III(E/K) when E has analytic rank one over K, much less is

known except the first example in this direction E = X0(11) for the 5-part
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of the Shafarevich-Tate group, which is studied by Gross [Gr] and Mazur

[Ma1].

2. Preliminaries

Let E be an elliptic curve over Q of conductor N . Let F be the associated

newform, and for d|N let ωd = ±1 be such that WdF = ωdF , where Wd is

the Atkin-Lehner involution.

Let p and q be distinct prime numbers such that p 6= 3 and q ≡ −1 (mod

9). Let Epq be an optimal elliptic curve over Q of conductor pq satisfying

the following conditions:

(i) ωp = −1, i.e, Epq has split multiplicative reduction at p and ωq = 1, i.e,

Epq has non-split multiplicative reduction at q.

(ii) Epq has a Q-rational 3-torsion point.

Such a curve exists thanks to [p. 75, B-J-K].

In [Theorem 1.3 and Proposition 3.1, B-J-K], we prove the following

proposition.

Proposition 2.1. Let K be an imaginary quadratic field satisfying

(i) p and q split in K,

(ii) 3 does not divide the class number of K,

(iii) Epq has no other K-rational torsion points besides Q-rational 3-torsion

points.

Then the Heegner point P ∗
E(DK , 1, 1) ∈ Epq(K) has infinite order.

Now we recall the result of Nakagawa and Horie [N-H] which is a refine-

ment of the result of Davenport and Heilbronn [D-H]. Let m and N be two

positive integers satisfying the following condition:

(∗) If an odd prime number p is a common divisor of m and

N , then p2 divides N but not m. Further if N is even, then

(i) 4 divides N and m ≡ 1 (mod 4), or (ii) 16 divides N and

m ≡ 8 or 12 (mod 16).

For any positive real number X > 0, we denote by by S−(X) the set of

negative fundamental discriminants D > −X, and put

S−(X, m,N) := {D ∈ S−(X) |D ≡ m (mod N)}.



4 DONGHO BYEON

Proposition 2.2. (Nakagawa and Horie) Let D < 0 be a negative fun-

damental discriminant and r3(D) be the 3-rank of the class group of the

imaginary quadratic field Q(
√

D). Then for any two positive integers m,N

satisfying (∗),

lim
X→∞

∑
D∈S−(X,m,N)

3r3(D)
/ ∑

D∈S−(X,m,N)

1 = 2.

From Proposition 2.2 and the following fact∑
D∈S−(X,m,N)

r3(D)=0

3r3(D) + 3
( ∑

D∈S−(X,m,N)

1−
∑

D∈S−(X,m,N)

r3(D)=0

3r3(D)
)

≤
∑

D∈S−(X,m,N)

3r3(D),

we can easily obtain the following lemma.

Lemma 2.3. Let D < 0 be a negative fundamental discriminant and h(D)

the class number of the imaginary quadratic field Q(
√

D). Then for any two

positive integers m,N satisfying (∗),

lim inf
X→∞

]{D ∈ S−(X, m,N) |h(D) 6≡ 0 (mod 3)}
]S−(X, m,N)

≥ 1
2
.

3. 3-part of the Shafarevich-Tate group

Proposition 3.1. Let K(6= Q(
√
−3)) be an imaginary quadratic field sat-

isfying

(i) p and q split in K,

(ii) 3 does not divide the class number of K,

(iii) Epq has no other K-rational 3-torsion points besides Q-rational 3-

torsion points.

Then III(Epq/K)[3] = 0.

Proof: Since Epq has a Q-rational 3-torsion point, the composition fac-

tors of Epq[3] are Z/3Z and µ3, so from the long exact sequence of Galois

cohomology, we have the following exact sequence

0 → H1(GK̄/K , Z/3Z) → H1(GK̄/K , Epq[3]) → H1(GK̄/K , µ3). (1)
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For a finite set S of places of K, we define

H1(GK̄/K ,M ; S) := {ξ ∈ H1(GK̄/K ,M) | ξ is unramified outside S}.

Then from (1), we have the following exact sequence

0 → H1(GK̄/K , Z/3Z ; S) → H1(GK̄/K , Epq[3] ; S) → H1(GK̄/K , µ3 ; S). (2)

Let S(3)(Epq/K) be the 3-Selmer group of Epq over K. From [Corollary

4.4 Ch X, Si], we know that

S(3)(Epq/K) ⊆ H1(GK̄/K , Epq[3] ; S1)

where S1 is the set of places of K containing the infinite place and the finite

places dividing 3pq.

Let ν3 be a place of K which divides 3. From the condition (iii), Epq(K)[3]

injects in Ẽν3 , where Ẽν3 is the reduction of E modulo ν3 (see [Example 6.1.1,

Ch IV, Si]). This implies that S(3)(Epq/K) is unramified at ν3, since Epq/K

has good reduction at ν3 (see [proof of Proposition 4.1, Ch VII, Si]). So we

have that

S(3)(Epq/K) ⊆ H1(GK̄/K , Epq[3] ; S2)

where S2 is the set of places of K containing the infinite place and the finite

places dividing pq.

Let cq be the index in Epq(Qq) of the subgroup Epq
0 (Qq) of points which

have nonsingular reduction modulo q. Then cq is equal to 1 or 2 because

ωq = 1 (see [Theorem 14.1 (d) Appendix C, Si]). From [Proposition 3.2,

S-S], we know that

S(3)(Epq/K) ⊆ H1(GK̄/K , Epq[3] ; S3)

where S3 is the set of places of K containing the infinite place and the finite

places dividing p.

Let OS
K := {a ∈ K | ν(a) ≥ 0 for all places ν of K, ν 6∈ S} be the ring of

S-integers of K and ClS(K) the S-ideal class group of K; it is the factor

group of the ideal class group Cl(K) of K by its subgroup generated by

classes of primes in S. We note that the order of ClS(K) divides the class

number of K. By class field theory, we have

H1(GK̄/K , Z/3Z ;S) = Hom(ClS(K), Z/3Z).
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So if 3 does not divide the class number of K, then H1(GK̄/K , Z/3Z ; S) = 0.

From (2), we have the following exact sequence

0 → H1(GK̄/K , Epq[3] ; S) → H1(GK̄/K , µ3 ; S).

Thus we have that

S(3)(Epq/K) ⊆ H1(GK̄/K , µ3 ; S3).

Since

H1(GK̄/K , µ3 ; S3) ∼= {b ∈ K∗/K∗3 | ordν(b) ≡ 0 (mod 3) for all ν 6∈ S3},

we have that

dim3S
(3)(Epq/K) ≤ 2,

where dim3 denotes the dimension of an F3-vector space.

From Proposition 2.1, we know that if K satisfies the above three condi-

tions, then the Heegner point P ∗
E(DK , 1, 1) ∈ Epq(K) has infinite order and

Epq(K) has rank 1.

Epq(K)/3Epq(K) ∼= (Z⊕ Epq(K)tor)/ 3(Z⊕ Epq(K)tor) ∼= Z/3Z⊕ Z/3Z.

Thus from the following exact sequence

0 → Epq(K)/3Epq(K) → S(3)(Epq/K) → III(Epq/K)[3] → 0.

we have that

S(3)(Epq/K) ∼= Z/3Z⊕ Z/3Z and III(Epq/K)[3] = 0.

2

4. Proof of Theorem 1.1

Proposition 4.1. Let K be an imaginary quadratic field satisfying

(i) p and q split in K,

(ii) 3 does not divide the class number of K,

(iii) Epq has no other K-rational 3-torsion point than Q-rational 3-torsion

points.
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Let j(Epq) be the j-invariant of Epq and νp be a finite place dividing p.

Assume that ord3(ordνp(j(Epq))) = 1. Then

ord3

( [Epq(K) : ZP ∗
E(DK , 1, 1)]

c · cp · cq

)
= 0.

Proof: In [Proposition 3.1, B-J-K], to prove that P ∗
E(DK , 1, 1) ∈ Epq(K)

has infinite order, we show that P ∗
E(DK , 1, 1) is not trivial in Epq

DK
(Q)/3Epq

DK
(Q),

where Epq
DK

is the quadratic twist of Epq. We note that Epq
DK

(Q) is the (-

)-eigenspace of σ 6= 1 in Gal(K/Q) acting on Epq(K). We also note that

rank Epq(Q) = 0, since rank Epq
DK

(Q) + rankEpq(Q) = rank Epq(K) = 1.

This implies that

ord3([Epq(K) : ZP ∗
E(DK , 1, 1)]) = ord3|Epq(K)tor| = 1.

Since Epq is optimal and its conductor pq is square-free, c = 1 (See [Corollary

4.1, Ma]). And ord3(cp) = 1 because ωp = −1 and ord3(ordνp(j(Epq))) = 1

(See [Corollary 15.2.1 Appendix C, Si]). And cq = 1 or 2 because ωq = 1.

So we have that

ord3(c · cp · cq) = 1

and we complete the proof. 2

Proof of Theorem 1.1: Let E′ : y2 + a1xy + a3y = x3, a1, a3 ∈ Z. Then the

point (0, 0) ∈ E′(Q) is a 3-torsion point. In [B-J-K], using a result of the

binary Goldbach problem for polynomials, we show that there are infinitely

many elliptic curves E′pq : y2 + a1xy + a3y = x3, a1, a3 ∈ Z of discriminant

∆ = a3
3(a

3
1 − 27a3) = p3q and conductor N = pq, where p, q are different

primes such that p 6= 3, q ≡ −1 (mod 9), more precisely, q ≡ −1 (mod

27) (see [Proof of Theorem 1.1, B-J-K]) and ωp = −1, ωq = 1. Let Epq be

the optimal elliptic curve in the isogeny class of E′pq. Since Epq has also

a Q-rational 3-torsion point by [Du] [Va], Epq can be also defined by the

Weierstrass equation of the form Epq : y2 + b1xy + b3y = x3, b1, b3 ∈ Z of

discriminant ∆ = b3
3(b

3
1−27b3) (see [Table 3, Ku]). By a change of variables,

we can assume that b1, b3 ∈ Z, b3 > 0 and there is no integer u such that

u|b1 and u3|b3. Then we can see that Epq : y2 + b1xy + b3y = x3 is a

minimal Weierstrass equation for Epq by checking the valuation of ∆ and

c4 = b1(b1
3 − 24b3).
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If a prime t divides b1 and b3, then Epq has additive reduction at t. So we

can assume that b1 and b3 are relatively prime. Then for every prime factors

t of b3, Epq has split multiplicative reduction at t, for every prime factors

t ≡ −1 (mod 3) of (b3
1 − 27b3), Epq has non-split multiplicative reduction

at t, and for every prime factors t ≡ 1 (mod 3) of (b3
1 − 27b3), Epq has

split multiplicative reduction at t because the slopes of the tangent lines at

the node (−b2
1/9, b3

1/27) ∈ Epq(Ft) are (−3b1 ± b1

√
−3)/6. So the condition

that Epq has split multiplication at p, i.e, ωp = −1 and Epq has non-split

multiplication at q, i.e, ωq = 1 implies that b3 = pr and b3
1 − 27b3 = ±qs.

If

ord3(ordνp(j(E
pq))) = ord3(ordνp(

b3
1(b1

3 − 24b3)3

b3
3(b

3
1 − 27b3)

)) = ord3(ordνp(b
−3
3 )) > 1,

then b3 = p3r′ and b3
1 − 27b3 = ±qs is factored by

b3
1 − (3pr′)3 = (b1 − 3pr′)(b2

1 + 3b1p
r′ + 9p2r′).

We can see that b1 − 3pr′ and b2
1 + 3b1p

r′ + 9p2r′ are relatively prime. So

b1 − 3pr′ = ±1 or b2
1 + 3b1p

r′ + 9p2r′ = ±1. But b2
1 + 3b1p

r′ + 9p2r′ can

not be equal to ±1. Suppose that b1 − 3pr′ = ±1. Then b1 > 0 and

b2
1 + 3b1p

r′ + 9p2r′ > 0. If b1 − 3pr′ = 1, then

b3
1 − 27b3 = (3pr′ + 1)3 − 27p3r′ = 27p2r′ + 9pr′ + 1− 27p3r′ = qs.

If s is odd, then the left hand side of this equation is congruent to 1 modulo

9, but the right hand side of this equation is congruent to −1 modulo 9. So

it is impossible. If s is even, then we have

p2r′ + pr′/3− p3r′ = (qs − 1)/27,

and (qs − 1)/27 is an integer, since q ≡ −1 (mod 27). So p should be equal

to 3, but it is contraction to the condition of Epq. Thus b1 − 3pr′ can not

be equal to 1. Similarly, we can show that b1− 3pr′ can not be equal to −1.

Thus ord3(ordνp(j(Epq))) should be equal to 1.

So for the imaginary quadratic field K satisfying the conditions in Propo-

sition 3.1 and Proposition 4.1, we have that

ord3|III(Epq/K)| = 2ord3

( [Epq(K) : ZP ∗
E(DK , 1, 1)]

c · cp · cq

)
= 0.
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Now we compute the number of imaginary quadratic fields K satisfying

the conditions in Proposition 3.1 and Proposition 4.1. It is known that when

X →∞,

]S−(X) ∼ 3X

π2

]S−(X, m,N) ∼ 3X

π2ϕ(N)

∏
p|N

q

p + 1
,

where p runs over all the prime divisors of N and q = 4 if p = 2, q = p

otherwise, and ϕ is the Euler function (See [Proposition 2, [N-H]). Thus

from Lemma 2.3, we obtain the following estimates.

lim inf
X→∞

]{D ∈ S−(X) |h(D) 6≡ 0 (mod 3), (D
p ) = 1 and (D

q ) = 1}
]S−(X)

≥ 1
8
· pq

(p + 1)(q + 1)
.

And we know that there are only finitely many imaginary quadratic fields K

such that E(K) has other K-rational 3-torsion point besides Q-rational 3-

torsion points (see [Exercise 8.17, Si]). So at least 1
8 ·

pq
(p+1)(q+1) of imaginary

quadratic fields K satisfy the conditions in Proposition 3.1 and Proposition

4.1. Thus we complete the proof of Theorem 1.1. 2
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