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Abstract. Let p ∈ {3, 5, 7} and E/Q an elliptic curve with a rational point P of order p. Let D

be a square-free integer and ED the D-quadratic twist of E. Vatsal [V] found some conditions
such that ED has (analytic) rank zero and Frey [F] found some conditions such that the p-
Selmer group of ED is trivial. In this paper, we will consider a family of ED satisfying both of
the conditions of Vatsal and Frey and show that the p-part of the Birch and Swinnerton-Dyer
conjecture is true for these elliptic curves ED. As a corollary we will show that there are infinitely
many elliptic curves E/Q such that for a positive portion of D, ED has rank zero and satisfies
the 3-part of the Birch and Swinnerton-Dyer conjecture. Previously only a finite number of such
curves were known, due to James [J].

1. Introduction

Let E/Q be an elliptic curve of conductor NE , given by

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where a1, a2, a3, a4, a6 ∈ Z and L(E, s) its Hasse-Weil L-function. Let D be a square-
free integer and h(D) the class number of the quadratic field Q(

√
D). Let ED be the

D-quadratic twist of E which is given by

ED : y2 = x3 + b2Dx2 + 8b4D
2x + 16b6D

3,

where b2 := a2
1 + 4a2, b4 := 2a4 + a1a3, b6 := a2

3 + 4a6.
If ED has analytic rank zero, the Birch and Swinnerton-Dyer Conjecture predicts that

L(ED, 1)
ΩED

=
#X(ED/Q)

∏
q cq(ED/Q)

#ED(Q)2tor
,

where ΩED
,X(ED/Q) and cq(ED/Q) denote the real period, Tate-Shafarevich group and

local Tamagawa number at q|NED
of ED, respectively.

In [V] Vatsal found some conditions such that ED has (analytic) rank zero and in [F],
[A-B-F] Frey found some conditions such that the p-Selmer group of ED is trivial. In this
paper, we will consider a family of ED satisfying both of the conditions of Vatsal and Frey
and show that the p-part of the Birch and Swinnerton-Dyer conjecture is true for these
elliptic curves ED.

Theorem 1.1. Let p ∈ {3, 5, 7} and E/Q be an optimal elliptic curve with a rational
point P of order p and good, ordinary reduction at p. Suppose that 2, 3 - NE, E has no
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additive reduction, and ordq(jE) ≡ 0 (mod p) for each odd prime q|NE with q ≡ −1 (mod
p). Then

ordp

(
L(ED, 1)

ΩED

)
= ordp

(#X(ED/Q)
∏

q cq(ED/Q)
#ED(Q)2tor

)
= 0,

for every negative square-free integer D prime to pNE such that h(D) 6≡ 0 (mod p) and(
D

q

)
=
{
−1 if E has split multiplicative reduction at q,

1 if E has nonsplit multiplicative reduction at q.

As a corollary we will show that there are infinitely many elliptic curves E/Q such that
for a positive portion of D, ED has rank zero and satisfies the 3-part of the Birch and
Swinnerton-Dyer conjecture. Previously only a finite number of such curves were known,
due to James [J].

Corollary 1.2.
(1) For p = 3, there are infinitely many elliptic curves E/Q satisfying the conditions of
Theorem 1.1, and for these elliptic curves we have

#{−X <D < 0 : D is square-free and

ord3

(
L(ED, 1)

ΩED

)
= ord3

(#X(ED/Q)
∏

q cq(ED/Q)
#ED(Q)2tor

)
= 0} �E X.

(2) For p = 5, there are infinitely many elliptic curves E/Q satisfying the conditions of
Theorem 1.1, and for these elliptic curves if there is at least one odd D0 satisfying the
further conditions of Theorem 1.1 such that at least one prime factor of D0 is larger than
[Γ0(1) : Γ0(4·52·(4NE)4)]

8 + 1, we have

#{−X <D < 0 : D is square-free and

ord5

(
L(ED, 1)

ΩED

)
= ord5

(#X(ED/Q)
∏

q cq(ED/Q)
#ED(Q)2tor

)
= 0} �E

√
X

log X
.

2. Proof of Theorem 1.1

In [V], Vatsal proved the following theorem.

Theorem 2.1. [Corollary (3.4), V]) Let p be an odd prime and E/Q be an elliptic curve
with a rational point P of order p and good, ordinary reduction at p. Assume that each
prime of additive reduction is congruent to 1 modulo p. Then L(ED, 1) 6= 0 for every
negative square-free integer D prime to NE such that h(D) 6≡ 0 (mod p) and

(
D

q

)
=
{
−1 if E has additive or split multiplicative reduction at q;
−q (mod p) if E has nonsplit multiplicative reduction at q.
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Remark. In fact, Vatsal [Theorem (2.10) and Theorem (3.3), V] proved that for ED in
Theorem 1.1,

ordp

(
τ(χD)

L(ED, 1)
(−2πi)Ω−f

)
= 0 ,

where τ(χD) is the Gauss sum of the quadratic character χD and Ω−f is the canonical pe-
riod of the cuspform f corresponds to E. If E is optimal, then the imaginary period Ω−E of
E is equal to (−2πi)Ω−f up to a p-adic unit (See [Proposition (3.1), G-V]). Pal [Proposition
2.5 and Theorem 3.2, Pa] proved that ΩED

= ũ√
D

c∞(ED)Ω−E , where c∞(ED) = 1 or 2 is
the number of connected components of ED(R) and ũ is a rational number not divisible
by p. So Ω−E is equal to

√
DΩED

up to a p-adic unit. Since τ(χD) =
√

D, we have that if
E is optimal, then

ordp

(
L(ED, 1)

ΩED

)
= 0 .

The following theorem is an effective form of [Proposition 1.5, A-B-F].

Theorem 2.2. ([A-B-F]) Let p be an odd prime and E/Q be an elliptic curve with a
rational point P of order p and good reduction at p. Suppose that 2 - NE, E has no
additive reduction, and ordq(jE) ≡ 0 (mod p) for each odd prime q|NE with q ≡ −1 (mod
p). Then the p-Selmer group S(ED/Q)p of ED is trivial for every negative square-free
integer D prime to pNE such that h(D) 6≡ 0 (mod p) and(

D

q

)
=
{
−1 if E has split multiplicative reduction at q;

1 if E has nonsplit multiplicative reduction at q.

Lemma 2.3. Let p be an odd prime and E/Q be an elliptic curve with a rational point
P of order p and good reduction at p. Assume that E has no additive reduction. For a
prime q(6= 2, 3)|NE,
(1) if P reduces to a singular point in Ẽ(Fq), then E has split multiplicative reduction at
q,
(2) if P reduces to a non-singular point in Ẽ(Fq), then

q ≡
{

1 (mod p) if and only if E has split multiplicative reduction at q;
−1 (mod p) if and only if E has nonsplit multiplicative reduction at q.

Proof. We may assume P = (0, 0) is a rational torsion point of order p. If P = (0, 0)
is a singular point in Ẽ(Fq), then we easily see that a2 = a3 = a4 = a6 = 0. Since
y2 + a1xy − x3 = y(y + a1x)− x3, E has split multiplicative reduction at q. This proves
the first part of the lemma. If P is a non-singular point in Ẽ(Fq), then p divides the order
of the non-singular part Ẽ(Fq)ns of Ẽ(Fq). So the second part comes from the order of
Ẽ(Fq)ns, which is equal to q − 1 if E has split multiplicative reduction at q and is equal
to q + 1 if E has nonsplit multiplicative reduction at q (See [p.59, Mi]). �

From Theorem 2.1, Theorem 2.2 and Lemma 2.3, we obtain the following proposition.



4 DONGHO BYEON AND NAYOUNG KIM

Proposition 2.4. Let p be an odd prime and E/Q be an elliptic curve with a rational
point P of order p and good, ordinary reduction at p. Suppose that 2, 3 - NE, E has
no additive reduction, and ordq(jE) ≡ 0 (mod p) for each odd prime q|NE with q ≡ −1
(mod p). Then the p-Selmer group S(ED/Q)p of ED is trivial and L(ED, 1) 6= 0 for every
negative square-free integer D prime to pNE such that h(D) 6≡ 0 (mod p) and(

D

q

)
=
{
−1 if E has split multiplicative reduction at q;

1 if E has nonsplit multiplicative reduction at q.

Lemma 2.5. ([p.59, Mi]) Let l 6= 2, 3 be a prime, and E/Q be an elliptic curve given by

E : y2 = x3 + ax + b, a, b ∈ Z.

Assume that this equation is minimal at l and E has bad reduction at l. Then

−2ab =

 0 in Fl if E has additive reduction at l,
a square in Fl if E has split multiplicative reduction at l,
a non-square in Fl if E has nonsplit multiplicative reduction at l.

From Lemma 2.5, we can prove the following lemma which is needed to compute Tam-
agawa numbers of ED in the proof of Theorem 1.1.

Lemma 2.6. Let E/Q be an elliptic curve. Assume that E has no additive reduction.
Then ED has nonsplit multiplicative reduction at q(6= 2, 3)|NE for every negative square-
free integer D such that(

D

q

)
=
{
−1 if E has split multiplicative reduction at q;

1 if E has nonsplit multiplicative reduction at q.

Proof. By assumption q 6= 2, 3, we may assume that E has a minimal Weierstrass equation
at q of the form y2 = x3+ax+b for some a, b ∈ Z. Then ED is given by: y2 = x3+aD2x+
bD3 and this equation is also minimal at q. If E has split multiplicative reduction at q, then
(−2abD5

q ) = (−2ab
q )(D

q ) = 1 · (−1) = −1. If E has nonsplit multiplicative reduction at q,

then (−2abD5

q ) = (−2ab
q )(D

q ) = (−1) · 1 = −1. Thus ED always has nonsplit multiplicative
reduction at q by Lemma 2.5. �

Proof of Theorem 1.1. Suppose that ED is the curve in Theorem 1.1. Then the p-
Selmer group S(ED/Q)p of ED is trivial by Proposition 2.4. Thus rank(ED(Q)) = 0,
ordp(#ED(Q)tor) = 0, and ordp

(
#X

(
ED/Q

))
= 0, by the usual Kummer exact sequence.

Furthermore since E is optimal, we have ordp

(L(ED,1)
ΩED

)
= 0 by the remark below Theorem

2.1. Since the discriminant ∆(ED) of ED is equal to 212 ·D6 ·∆(E), we need to compute
cq(ED/Q) for primes q | 2DNE . By Lemma 2.6, ED has nonsplit multiplicative reduction
at q|NE , thus cq(ED/Q) = 1 or 2 for q |NE (See [Corollary 15.2.1, Appendix C, S]). By
the case 6 of Tate’s algorithm in [T], we have cq(ED/Q) = 1, 2, or 4 for q |D. If ED

has bad reduction at 2, we have c2(ED/Q) = 1 by direct computation for D in a set of
representatives of Q2/(Q×

2 )2. Finally we have

ordp

(
L(ED, 1)

ΩED

)
= ordp

(#X(ED/Q)
∏

q cq(ED/Q)
#ED(Q)2tor

)
= 0.

�
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3. Proof of Corollary 1.2

3.1. Proof of Corollary 1.2 (1). Let Φ(x) ∈ Z[x] be a polynomial of degree k with
positive leading coefficient. Then Perelli [Pe] and Brüdern, Kawada and Wooley [B-K-W]
proved that almost all values of the polynomial 2Φ(n) are the sum of two primes. With
slight modification, we obtain the following proposition.

Proposition 3.1. ([B-K-W] or [B-J-K]) Let Φ(x) ∈ Z[x] be a polynomial of degree k with
positive leading coefficient and let A,B be positive odd integers such that gcd(A,B) = 1.
Let Ek(N ; Φ) denote the number of integers n ∈ [1, N ] for which the equation

2Φ(n) = As + Bt

has no solution in primes s, t. Then there is an absolute constant c > 0 such that

Ek(N ; Φ) �Φ N1−c/k.

Now we can prove Corollary 1.2 (1).

Proof of Corollary 1.2 (1). Let p1, · · · , pr and q1, · · · , qr′ be different primes (6= 2, 3) such
that qi ≡ 1 (mod 3) for all i = 1, · · · , r′. Put Φ(x) := (3(2x + 1) + 1)3/2 ∈ Z[x] and
A := 27p1 · · · pr, B := q1 · · · qr′ . Then there are infinitely many positive integers n such
that

2Φ(n) = (3(2n + 1) + 1)3 = 27p1 · · · prs + q1 · · · qr′t

for some primes s, t, by Proposition 3.1. We may assume that s, t 6= 2, 3, pi, qj . For such
n, s, t, put a := 3(2n + 1) + 1 and b := p1 · · · prs. Let E(a, b) be the elliptic curve defined
by

E(a, b) : y2 + axy + by = x3.

Then E(a, b) has the point P = (0, 0) of order 3 and the discriminant ∆(E(a, b)) of E(a, b)
is

∆(E(a, b)) = b3(a3 − 27b) = p3
1 · · · p3

rs
3q1 · · · qr′t.

We can easily check that 2, 3 - NE(a,b), E(a, b) has no additive reduction, and ordq(jE(a,b)) ≡
0 (mod 3) for each odd prime q|NE with q ≡ −1 (mod 3).

Let C(E) denote the number of Q-isomorphism classes of elliptic curves in the isogeny
class C of an elliptic curve E. For a prime q, let Cq(E) be the number of Q-isomorphism
classes of elliptic curves q-power isogenous to E. Then we have the product formula (See
[K])

C(E) =
∏
q

Cq(E).

Since b is not a cubic number, the elliptic curve E′(a, b) = E(a, b)/ < P > has no
rational point of order 3 (See [Theorem 1.1, H]). So there is no 3-isogeny from E′(a, b)
to an elliptic curve E′′ whose kernel is isomorphic to Z/3Z. Since ∆(E(a, b)) is not a
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cubic number, there is no 3-isogeny from an elliptic curve E” to E(a, b) whose kernel
is isomorphic to Z/3Z (See [Section 1, H]). These imply that the set of Q-isomorphism
classes of elliptic curves 3-power isogenous to E is {E(a, b), E′(a, b)} and C3(E(a, b)) = 2.
Using the duplication formula, we can show that E(a, b) has no rational points of order
2. So C2(E(a, b)) = 1. For any other prime q 6= 2, 3, if there is an elliptic curve E′′ which
is q-isogeneous to E(a, b), then E′′ or E(a, b) has a rational point of order 3q. But it is
impossible. So Cq(E(a, b)) = 1 for any other prime q 6= 2, 3. Thus by the product formula
we have C(E(a, b)) = 2 and the isogeny class of E(a, b) over Q is {E(a, b), E′(a, b)}.
Since the optimal curve in the isogeny class should have a rational point of order 3 (See
[Theorem 1.2, D]), E(a, b) is optimal. Thus E(a, b) satisfies the conditions of Theorem
1.1, for p = 3. The number of D such that −X < D < 0, satisfying the further conditions
of Theorem 1.1 is �E X, by the work of Davenport and Heilbronn [D-H] as improved by
Nakagawa and Horie [N-H]. Hence we deduce Corollary 1.2(1). �

3.2. Proof of Corollary 1.2 (2). In [I], Iwaniec proved the following proposition.

Proposition 3.2. ([I]) Let F (x, y) = Ax2 + Bxy + Cy2 be an irreducible quadratic form
and n, m, r, r′ be integers such that nm 6= 0. If F (mx + r, ny + r′) represents an integer
prime to any arbitrary given non-zero integer , then∑

w≤N : primes
w = F (mx+r,ny+r′)

1 � N

log N
.

Now we can prove Corollary 1.2 (2).

Proof of Corollary 1.2 (2). Put F (x, y) := x2 − 11xy − y2. Then there are infinitely
many primes of the form F (30x + 1, 30y − 1), by Proposition 3.2. Such a w is necessarily
congruent to 1 (mod 5). For such x, y, put u := 30x + 1, and v := 30y− 1. Let E(u, v) be
an elliptic curve defined by:

E(u, v) : y2 + (u− v)xy − u2vy = x3 − uvx2.

Then E(u, v) has the point P = (0, 0) of order 5 and the discriminant ∆(E(u, v)) is

∆(E(u, v)) = u5v5(v2 − 11uv − u2) = −u5v5w.

We can easily check that 2, 3 - NE(u,v), E(u, v) has no additive reduction, and ordq(jE(u,v)) ≡
0 (mod 5) for each odd prime q|NE with q ≡ −1 (mod 5).

Using the result in [Section 2, H], we can show that the elliptic curve E′(u, v) =
E(u, v)/ < P > has no rational point of order 5 and there is no 5-isogeny from an elliptic
curve E′′ to E(u, v) whose kernel is isomorphic to Z/5Z. These imply that the set of
Q-isomorphism classes of elliptic curves 5-power isogenous to E is {E(u, v), E′(u, v)} and
C5(E(u, v)) = 2. By the same argument to the case p = 3, we have Cq(E(u, v)) = 1
for any other prime q 6= 5. Thus by the product formula we have C(E(u, v)) = 2 and
the isogeny class of E(u, v) over Q is {E(u, v), E′(u, v)}. Since the optimal curve in the
isogeny class should have a rational point of order 5 (See [Theorem 1.2, D]), E(u, v) is
optimal. Thus E(u, v) satisfies the conditions of Theorem 1.1, for p = 5. If there is at
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least one odd D0 satisfying the further conditions of Theorem 1.1 such that at least one
prime factor of D0 is larger than [Γ0(1) : Γ0(4·52·(4NE)4)]

8 +1, then the number of D such that
−X < D < 0, satisfying the further conditions of Theorem 1.1 is �E

√
X

log X , by [Theorem
13, J-O]. Hence we deduce Corollary 1.2(2). �

Finally we add the following remark suggested by the referee.
Remark.
(1) Since the p-part of the Birch and Swinnerton-Dyer conjecture is invariant under iso-
genies [C], Theorem 1.1 implies that if E′/Q is an elliptic curve which is Q-isogeneous to
E/Q satisfying the conditions of Theorem 1.1, then

ordp

(
L(E′

D, 1)
ΩE′

D

)
= ordp

(#X(E′
D/Q)

∏
q cq(E′

D/Q)
#E′

D(Q)2tor

)
,

for every negative square-free integer D satisfying the conditions of Theorem 1.1.
(2) In [p.415, V], Vatsal remarks "It would be interesting to compare Frey’s results to ours
more explicitly; we note only that we can recover the triviality of the 3-Selmer groups in
the present situation by invoking the theorem of Kolyvagin". However it seems that the
theorem of Kolyvagin using Euler system can not be applied to this situation where E
has a rational p-torsion point, because the mod p Galois representation for ED will not
be surjective when E has a rational p-torsion point.

Acknowledgement The authors would like to thank the referee for many valuable sug-
gestions.
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