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Abstract. In this paper, we will introduce the notion of the real quadratic function

fields of minimal type, which is a function field analogue to Kawamoto and Tomita’s

notion of real quadratic fields of minimal type. As number field cases, we will show

that there are exactly 6 real quadratic function fields of class number one that are

not of minimal type.

1. Introduction

Let q be an odd prime and k = Fq the finite field of order q. Let D ∈

k[x] be a monic square-free polynomial of even degree and K = k(x)(
√

D)

the real quadratic function field over k. Let OK = k[x] + k[x]
√

D be the

integral closure of k[x] in K, h(OK) the ideal class number of OK , and

εK = tD + uD

√
D the fundamental unit of K.

Let D ∈ k[x] be a monic square-free polynomial of even degree. Then
√

D has a continued fraction expansion

√
D = [a0, a1, a2, . . . , al−1, 2a0],

where the sequence of non-constant polynomials a1, . . . , al−1 is palindromic,

that is, al−i = ai for 1 ≤ i ≤ l − 1. Here l is the period of D.

For a given positive integer l > 1 and a palindromic sequence of non-

constant polynomials a1, . . ., al−1 in k[x], let Sk(l; a1, . . . , al−1) be the set

of all monic square-free polynomials D of even degree in k[x] such that
√

D = [a0, a1, . . . , al−1, 2a0] for some non-constant polynomial a0 in k[x].

In this paper, we will show the following theorem, which is a function

field analogue to [B-L] and [Ha].

Theorem 1.1. Let q be an odd prime and k = Fq. For a given positive

integer l > 1 and a palindromic sequence of non-constant polynomials a1,

. . ., al−1 in k[x], deg D > deg uD for all D ∈ Sk(l; a1, . . . , al−1) with one
1
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possible exception. If the exception exists, then it has the least degree in

Sk(l; a1, . . . , al−1).

The following definition is a function field analogue to Kawamoto and

Tomita’s notion of real quadratic fields of minimal type in [K-T].

Definition 1.2. Let q be an odd prime and k = Fq. For a given positive

integer l > 1 and a palindromic sequence of non-constant polynomials a1,

. . ., al−1 in k[x], if Sk(l; a1, . . . , al−1) has the exception D in Theorem 1.1,

then we call K = k(x)(
√

D) a real quadratic function field of minimal type

over k.

In [K-T], Kawamoto and Tomita proved that there exist exactly 51 real

quadratic fields of ideal class number one that are not of minimal type with

one more possible exception. In this paper, we will show the following similar

theorem.

Theorem 1.3. Let q be an odd prime and k = Fq. If q = 3 or 5, there are

exactly 6 real quadratic function fields over k with ideal class number one

that are not of minimal type. If q ≥ 7, all real quadratic function fields with

ideal class number one is of minimal type.

2. Proof of Theorem 1.1

Let q be an odd prime and k = Fq. For a continued fraction expansion in

k(( 1
x))

[a0, a1, a2, . . .],

we define for i ∈ N0,

p−2 := 0, p−1 := 1, pi := aipi−1 + pi−2,

q−2 := 1, q−1 := 0, qi := aiqi−1 + qi−2.

Then we have for i ∈ N0,

pi

qi
= [a0, a1, a2, . . . , ai],

piqi−1 − pi−1qi = (−1)i−1,

pi+1 = ai+1pi + pi−1,

qi+1 = ai+1qi + qi−1.
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We call pi

qi
the i-th approximant of the continued fraction [a0, a1, a2, . . .].

Let a1, · · · , al−1 be a palindromic sequence of non-constant polynomials

in k[x]. Suppose that there exists a monic square-free polynomial D of even

degree and a0 ∈ k[x] such that

√
D = [a0, a1, a2, · · · , al−1, 2a0].

Then we have
√

D = a0 + β,

where β = [0, a1, a2, · · · , al−1, 2a0]. Let pi

qi
be the i-th approximant of the

continued fraction [0, a1, a2, · · · , al−1, 2a0]. Then we have

pl−1 = ql−2

and
√

D =

√
a2

0 +
2a0pl−1 + pl−2

ql−1

(cf. [p.338, Mc]). We note that deg a2
0 > deg 2a0pl−1+pl−2

ql−1
. If we let v :=

2a0pl−1+pl−2

ql−1
, then we have v ∈ k[x] and

2a0pl−1 + pl−2 = vql−1.

So we have

2a0pl−1 − vql−1 = −pl−2 = (−1)l+1pl−2(pl−1ql−2 − pl−2ql−1)

and

pl−1(2a0 + (−1)lpl−2ql−2) = ql−1(v + (−1)lp2
l−2).

Since pl−1 and ql−1 are relatively prime, there exists w ∈ k[x] such that

2a0 + (−1)lpl−2ql−2 = wql−1,

and

v + (−1)lp2
l−2 = wpl−1.

Thus we have

D = (
wql−1 + (−1)l−1pl−2ql−2

2
)2 + wpl−1 + (−1)l−1p2

l−2

and obtain the following lemma.
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Lemma 2.1. Let q be an odd prime, k = Fq, and D a monic square-free

polynomial of even degree in k[x]. Let l > 1 be a positive integer, a1, · · · , al−1

a palindromic sequence of non-constant polynomials in k[x], and pi

qi
the i-

th approximant of the continued fraction [0, a1, a2, . . . , al−1]. Suppose that

there exists a0 ∈ k[x] such that

√
D = [a0, a1, a2, · · · , al−1, 2a0].

Then there exists w ∈ k[x] such that

D = (
wql−1 + (−1)l−1pl−2ql−2

2
)2 + wpl−1 + (−1)l−1p2

l−2.

The following lemma is well known.

Lemma 2.2. Let q be an odd prime and k = Fq. Let D be a monic square-

free polynomial of even degree in k[x] such that
√

D = [a0, a1, a2, · · · , al−1, 2a0]

and pi

qi
the i-th approximant of the continued fraction. Let K = k(x)(

√
D)

be the real quadratic function field over k and εK the fundamental unit of

K. Then

εK =

 pl−1 + ql−1

√
D if l is eqaul to the quasi-period of D,

p l
2
−1 + q l

2
−1

√
D if l is eqaul to two times of the quasi-period of D.

Remark. It is well known that the period of D is equal to the quasi-period or

two times of the quasi-period of D. For detail and definition of quasi-period,

see [St].

Proof of Theorem 1.1. Let q be an odd prime and k = Fq. For a given

positive integer l > 1 and a palindromic sequence of polynomials a1, . . .,

al−1 in k[x], suppose that D ∈ Sk(l; a1, . . . , al−1). Then by Lemma 2.1, we

have

D = (
wql−1 + (−1)l−1pl−2ql−2

2
)2 + wpl−1 + (−1)l+1p2

l−2
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for some w ∈ k[x], where pi

qi
the i-th approximant of the continued fraction

[0, a1, a2, . . . , al−1]. So if deg wql−1 6= deg pl−2ql−2, then we have

deg D ≥ deg a2
0

= deg (
wql−1 + (−1)l−1pl−2ql−2

2
)2

> 2deg ql−1

> 2deg q l
2
−1

and by Lemma 2.2, we have

deg D > deg uD.

Suppose that deg wql−1 = deg pl−2ql−2. Then we can write

(−1)l−1pl−2ql−2 = αql−1 + γ

for some α, γ ∈ k[x] such that deg γ < deg ql−1 or γ = 0 and we have

wql−1 + (−1)l−1pl−2ql−2 = (w + α)ql−1 + γ.

So if w 6= −α, then by Lemma 2.1 we also have deg D > 2deg ql−1 and by

Lemma 2.2 we have

deg D > deg uD.

Thus we proved that deg D > deg uD for all D ∈ Sk(l; a1, . . . , al−1) with one

possible exception, which is the case w = −α and in this case D has the

least degree in Sk(l; a1, . . . , al−1). 2

3. Proof of Theorem 1.3

Let q be an odd prime and k = Fq. Let D ∈ k[x] be a monic square-free

polynomial of even degree and K = k(x)(
√

D) the real quadratic function

field over k. Let h(OK) be the ideal class number of OK and hK the divisor

class number of K. Then we have

hK = RKh(OK),

where RK is the regulator of K. If εK = tD + uD

√
D, then RK = deg tD.

We note that if deg D = 2N , then the genus gK of K is equal to N − 1.

Let l > 1 be a positive integer and a1, · · · , al−1 a palindromic sequence

of non-constant polynomials in k[x]. Suppose that D ∈ Sk(l : a1, · · · , al−1)
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and
√

D = [a0, a1, a2, · · · , al−1, 2a0] for some a0 ∈ k[x]. Let pi

qi
be the i-th

approximant of the continued fraction [a0, a1, a2, · · · , al−1, 2a0]. If D does

not have the least degree in Sk(l : a1, · · · , al−1), then deg D > 2deg ql−1. So

we have

deg D = 2N > 2deg ql−1 = 2(deg a1 + · · ·+ deg al−1)

and

RK ≤ deg pl−1 = deg a0 + deg a1 + · · ·+ deg an−1 = N + deg ql−1 < 2N.

So we have the following lower bound of the ideal class number of K =

k(x)(
√

D) from the work of Madan and Queen [M-Q] and the work of Feng

and Hu [F-H].

h(OK) ≥ (q − 1)(q2gK−1 + 1− 2gKq
2gK−1

2 )
RK(2gK − 1)(qgK − 1)

>
(q − 1)(q2N−3 + 1− 2(N − 1)q

2N−3
2 )

2N(2N − 3)(qN−1 − 1)
.

This lower bound implies the following proposition.

Proposition 3.1. Let q be an odd prime and k = Fq. Let D ∈ k[x] be a

monic square-free polynomial of even degree and K = k(x)(
√

D) the real

quadratic function field over k. If K is not minimal type and the ideal class

number of K is equal to one, then

deg D =


4, 6, 8, 10, if q = 3

4, 6, if q = 5

4, if q = 7

In particular, if q ≥ 11, then all real quadratic function fields with ideal class

number one is of minimal type.

Remark. If deg D = 2, D is not contained in Sk(l : a1, · · · , al−1) for l > 1.

In this case, K = k(x)(
√

D) always has ideal class number one.

Proof of Theorem 1.3. Theorem 1.3 follows from Proposition 3.1 and the

table of class numbers of quadratic function field in [F-H]. The complete list

of 6 real quadratic function fields over k with ideal class number one that
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are not of minimal type is following.

q, degD D R h(OK)

q = 3, degD = 4 x4 + 2x2 + 2 2 1

q = 3, degD = 6 x6 + x4 + x3 + x2 + 2x + 2 3 1

x6 + x4 + 2x3 + x2 + x + 2 3 1

x6 + x5 + 2x3 + 2x2 + 2 5 1

x6 + 2x5 + x3 + 2x2 + 2 5 1

q = 5, degD = 4 x4 + 2 2 1
2
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