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Abstract. Let E/K be an elliptic curve with j-invariant 0 defined over a number field K. In
this paper, we give a simple condition on K which determines whether all cubic twists of E/K
have the same root number or not. This is a cubic twist analogue to the work [D-D] of Dokchitser
and Dokchitser on quadratic twists of elliptic curves.

1. INTRODUCTION AND MAIN RESULTS

Let K be a number field of degree n over Q. Let E/K be an elliptic curve over
K with conductor N(E/K), and let L(E/K, s) be its Hasse-Weil L-function defined for
PR(s) > 3. The Hasse-Weil conjecture asserts that L(E/K, s) has an analytic continuation
to the whole of C and the completed L-function

L*(E/K,s) = F(%)" r(2 ; Ly ns N(B/ K2 L(B/K, 5)

satisfies a functional equation
L (E/K,2—s)=w(E/K)L"(E/K,s)

with the sign given by the global root number w(E/K) = £1. The global root number
has played an important role, since from the functional equation this number determines
the parity of ords—1 L(E/K, s) and under the parity conjecture, the parity of the Mordell-
WEeil rank of E over K. However, such a functional equation is not yet known to exist
in general. Therefore we adopt another representation-theoretic definition of the global
root number which can be defined independent on any conjectures and is conjectured to
be w(E/K). The global root number w(E/K) is the product of the local root numbers
over all places of K,

w(B/K) = [[w(E/K,)

with w(E/K,) defined using local Galois actions on the Tate module.

In [D-D], Dokchitser and Dokchitser consider an elliptic curve E/K all of whose qua-
dratic twists have the same global root number, and they gave the conditions on E/K
which determine whether it is such a curve. The aim of this paper is to give an answer to
the analogous question for cubic twists, i.e., to determine which elliptic curves have the
same global root number over all its cubic twists.
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Theorem 1.1. Let E/K be an elliptic curve with j-invariant 0 defined by the equation
y? = 23 + a, where a € K. For an element D € K*/(K*)3, let Ep : y* = 23 4+ aD? be
the cubic twist of E. Then the root number w(Ep/K) is constant for all D € K> /(K*)3
if and only if K contains v/—3. In particular, if K > /=3, then w(Ep/K) = +1 for
all D € K*/(K*)3, and if K # /=3, then there are infinitely many Ep/K such that
w(Ep/K) =41, and w(Ep/K) = —1, respectively.

2. PRELIMINARIES

Let us first collect a general list of local root number formulas. It is well-known that:

(B/K,) = +1 if E/K, has good or non-split multiplicative reduction;
v 77 =1 if vis Archimedean or F/K, has split multiplicative reduction.

At places of additive reduction, Rohrlich [R]| gives the following formulas for w(E/K,)
when K, = Q, with p > 5, and Conrad, Conrad and Helfgott [C-C-H]| prove that the
formulas can be extended for any K, with p > 5.

Theorem 2.1. (|R] Proposition 2, 3, [C-C-H] Theorem 3.1.) Let K, be a local field, with
residue field of characteristic p > 5 and normalized valuation v. Let E/K, be an elliptic
curve with additive reduction. We denote the usual discriminant of a Weierstrass model
for E/K, by A, and the quadratic residue symbol on the residue field of K, by (k—)

(1) Assume E has potentially good reduction. Define e = 12/ ged(v(A),12). We have
e € {1,2,3,4,6}, and the local root number w(E/K,) can be computed by the
following formulas:

1 ife=1,

_—vl ife=2 oré6,
w(B/K,) = Ekg ers

(%2) ife = 4.

(2) If E has potentially multiplicative reduction, then w(E/K,) = (;—3)

In [K], Kobayashi gives a formulas for the local root number w(E/K,) with any local
field K, of odd residue characteristic.

Theorem 2.2. (|K|, Theorem 1.1.) Let K, be a local field, with residue field of odd
characteristic and normalized valuation v. Let E/K, be an elliptic curve with potentially
good reduction. We denote the Hilbert symbol of K, by (, )k, -

(1) If the Kodaira-Néron type of E is Iy or I}, then

w(E/K,) = (Z)U(AW.
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(2) If the Kodaira-Néron type of E is 111 or II1T*, then

w(E/K,) = (kQ) .

(3) If the Kodaira-Néron type of E is II,IV,IV* or II*, there exists a Weierstrass
equation such that y*> = 13 + ax® + bz + ¢ with 3t v(c). Then for such equation,

we have
W(E/K) =5 (A k. <v}£:))v(m (Z)

where § = +1 and § = 1 if and only if A2 € K,,.

v(A)w(A)=1)
2

Thus, the local root numbers w(FE/K,) have been classified except at places above 2.
In [D-D2], Dokchitser and Dokchitser complete the remaining case. However for an elliptic
curve E : y? = 23 + a, the local root number w(E/K,) at places above 2 can be easily
computed by Kobayashi. (Note that Dokchitser and Dokchitser [D-D2, Section 4] inform
the misprints in [K, Proposition 6.1].)

Theorem 2.3. ([K]|, Proposition 6.1.) Let K, be a local field, with residue field of even
characteristic and normalized valuation v. Let E/K, be an elliptic curve E : y* = 23 + a.
Then

(-1, a)k, if v(A) =0 (mod 3) or /=3 € K,;

w(E/K,) = {

(3, a)k, otherwise.

3. PROOF OF THEOREM 1.1

In [K, Corollary 6.3], Kobayashi shows that if K > /=3 then any elliptic curve with
j-invariant 0 over K has global root number 1. Now we will show that the local root
number calculations prevent this in the case that K % /—3.

Suppose that K # v/—3. Then there are infinitely many prime numbers p with p = 2
(mod 3) such that some p|p in K has the residual degree f(p|p) = 1. So we can pick p|p
in K satisfying the following three conditions:

(al) The prime number p is # 2,3, and p = 2 (mod 3),

(a2) The residual degree f(p|p) is 1,

(a3) p doesn’t contain the coefficient a of E.

Let v’ be the finite place of K corresponding to the prime ideal p, and let 7 € K* be a
local uniformizer of v’ such that for all the other finite places v of K, v(m) = 0. Then we
can easily find D € K* /(K*)? satisfying the following three properties:
(b1) 3fv(aD?
(b2) v(A(ED)
(b3) v'(D) =0,

and we can show that the following two twists of E have different global root numbers:

for all places v over 3 of K,
=0 (mod 3) for all places v over 2 of K,

~—_

Ep:y*=2®+aD? E.p:y*=2®+ar’D?
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First we compare their local root numbers over K, with the residue characteristic > 5.
For all these v(# v’), the assumption v(7w) = 0 implies that the numbers e in Theorem
2.1(1) for Ep and E,p are same, and thus

w(ED/KU) = w(Eﬂ-D/KU).

For the v, Ep has good reduction at v’ by the conditions (al), (a3) and (b3), and so
w(Ep/K,) = 1. Also, since 7 is a local uniformizer, the number e in Theorem 2.1(1) is
3, and hence we have

o= ()~ (2)"- () -

by the conditions (al) and (a2). So we have

w(ED/KU/) # w(Eﬂ-D/KU/).

For a place v with the residue characteristic 3, Ep/K, and E,p/K, are of type II, IV,
IV* or IT* by the conditions (al) and (bl). Then the formulas in Theorem 2.2 (3) for
Ep and E,p are same, and thus

w(Ep/Ky) = w(Erp/Ky).
Finally, for a place v with the residue characteristic 2, we have
w(Ep/K,) = (-1, aD*)g, = (-1, a)k, = (-1, an’D*)k, = w(Exp/Ky)
by the condition (b2) and Theorem 2.3. So we conclude that
w(Ep/K) # w(Erp/K).

Furthermore, for a fixed 7, there are infinitely many D € K*/(K*)? satisfying the
property (b1)-(b3), and the involution D <+ 7D on K* /K *3 changes the sign of w(Ep/K).
This completes the proof of Theorem 1.1. O

Remark. The parity conjecture and Theorem 1.1 imply that if K > /=3, every cubic
twist Ep/K : y*> = 2° + aD? of E/K has the Mordell-Weil group Ep(K) of even rank.
On the other hand, using the complex multiplication [(3] of Ep/K, where (3 is a primitive
cubic root of unity and [(3](x, y) = ({32, y), we can show this without the parity conjecture,
because Ep(K) is a direct sum of two-dimensional subspaces with the bases of the form

{P, [¢s] P}
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