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Abstract. For i = 0, 1, let Ei be the Xi(N)-optimal curve of an isogeny class C of

elliptic curves defined over Q of conductor N . Stein and Watkins [SW] conjectured

that E0 and E1 differ by a 5-isogeny if and only if E0 = X0(11) and E1 = X1(11).

In this paper, we show that this conjecture is true if N is square-free and is not

divisible by 5. On the other hand, Hadano [Ha] conjectured for an elliptic curve E

defined over Q with a rational point P of order 5, the 5-isogenous curve E′ := E/〈P 〉

has a rational point of order 5 again if and only if E′ = X0(11) and E = X1(11). In

the process of the proof of Stein and Watkins’ conjecture, we show that Hadano’s

conjecture is not true.

1. Introduction

For a positive integer N , let X1(N) = H∗/Γ1(N) and X0(N) = H∗/Γ0(N)

denote the usual modular curves. Let C denote an isogeny class of elliptic

curves defined over Q of conductor N . For i = 0, 1, there is a unique curve

Ei ∈ C and a parametrization φi : Xi(N)→ Ei such that for any E ∈ C and

parametrization φ′i : Xi(N)→ E, there is an isogeny πi : Ei → E such that

πi ◦ φi = φ′i. For i = 0, 1, the curve Ei is called the Xi(N)-optimal curve.

It seems that for most isogeny classes C, E0 and E1 are the same. How-

ever, there are also several examples of isogeny classes with non-isomorphic

optimal curves. For example, E0 = X0(11) and E1 = X1(11) differ by a

5-isogeny. Based on numerical observation, Stein and Watkins [SW] made a

precise conjecture on the classification of isogeny classes with non-isomorphic
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optimal curves. According to [SW], in any isogeny class C, the optimal curves

E0 and E1 are only isogenous by an isogeny of degree 1, 2, 3, 4, or 5. For

the 5-isogeny case, they made the following

Conjecture. (Stein and Watkins) For i = 0, 1, let Ei be the Xi(N)-

optimal curve of an isogeny class C of elliptic curves defined over Q of

conductor N . Then E0 and E1 differ by a 5-isogeny if and only if E0 =

X0(11) and E1 = X1(11).

Remark. This conjecture needs to be modified as in the case of 3-isogeny

(cf. [BY2]) because there is a counterexample when N is not square-free

or 5 | N . For example, assuming Stevens’s conjecture(Conjecture 2.4 of

[St]), consider the isogeny class ‘33825be’ in Cremona’s database of ellip-

tic curves([Cr]). In this case, the curves ‘33825be1’ and ‘33825be3’ are

X0(33825)- and X1(33825)-optimal curves, respectively.

In [BY2], Byeon and Yhee proved that the conjecture of Stein and Watkins

is true for the case of 3-isogeny if N is square-free and 3 - N . (There is an

error in the proof of (ii) of Theorem 1.1 in [BY2]. However this error can

be recovered by Proposition 4.1 in §4. For details, see Remark in §4.) In

this paper, we prove that the conjecture of Stein and Watkins is true for the

case of 5-isogeny if N is square-free and 5 - N .

Theorem 1.1. For i = 0, 1, let Ei be the Xi(N)-optimal curve of an isogeny

class C of elliptic curves defined over Q of conductor N . Suppose that N is

square-free and 5 - N . Then E0 and E1 differ by a 5-isogeny if and only if

E0 = X0(11) and E1 = X1(11).

2. Preliminaries

2.1. Let C be an isogeny class of elliptic curves defined over Q. For any

E ∈ C, let EZ be the Néron model over Z and ωE a Néron differential on E.

Let π : E → E′ be an isogeny with E,E′ ∈ C. We say that π is étale if the

extended morphism EZ → E′Z between Néron models is étale. Equivalently,

π is étale if ker π is an étale group scheme. We need the following facts

about étale isogenies (cf. [Va]):
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• If π : E′ → E is any isogeny over Q, then we have π∗(ωE) = nπωE′ ,

for some nonzero nπ ∈ Z. Then the isogeny π is étale if and only if

nπ = ±1.

• If π is any isogeny of prime degree, then precisely one of π or its

dual isogeny π̂ is étale.

• The composition of two étale isogenies is also étale.

• Any étale isogeny is necessarily cyclic.

• Let E be an elliptic curve over Q which admits a cyclic l-isogeny

E → E′, for an odd prime l. Then it is étale if and only if its kernel

is isomorphic to Z/lZ as a Gal(Q/Q)-module.

Stevens [St] proved that in every isogeny class C of elliptic curves defined

over Q, there exists a unique curve Emin ∈ C such that for every E ∈ C,

there is an étale isogeny π : Emin → E. The curve Emin is called the minimal

curve in C. Stevens conjectured that Emin = E1 and Vatsal [Va] proved the

following theorem.

Theorem 2.1. (Vatsal) Suppose that the isogeny class C consists of semi-

stable curves. The étale isogeny π : Emin → E1 has degree a power of two.

2.2. Dummigan [Du] proved the following theorem is true with a condition

and later Byeon and Yhee [BY1] proved that it is in fact unconditionally

true.

Theorem 2.2. (Dummigan) Let E ∈ C be an elliptic curve defined over

Q of square-free conductor N with a rational point of order l - N . Then

E0 ∈ C has a rational point of order l.

3. Hadano’s conjecture

Let E be a rational elliptic curve of conductor N having a rational torsion

point of order n and p be a prime dividing n. In [Ha], Hadano considered

whether the p-isogenous curve E′ to E possesses a rational torsion point of

order n again. In this paper, we need the case when n = p = 5. For this

case, Hadano’s work can be restated as following.

When a rational elliptic curve E has a rational 5-torsion point, we can

take a Weierstrass equation for E as follows:

E : y2 + (v − u)xy − uv2y = x3 − uvx2 (1)
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where u, v ∈ Z with (u, v) = 1 and u > 0. Note that the discriminant ∆ of

E is given by

∆ = u5v5(u2 − 11uv − v2)

and the torsion group is T = {∞, (0, 0), (uv, u2v), (uv, 0), (0, uv2)}.

Lemma 3.1. The Weierstrass equation of the form (1) with u, v ∈ Z,

(u, v) = 1, and u > 0 is minimal.

Proof: We only need to check the minimality of the equation (1) for

primes dividing ∆ = u5v5(u2−11uv−v2). For primes p dividing uv, we can

obtain minimality by simply looking at the order of the constant c4: indeed,

ordp c4 = 0. Suppose that a prime p divides (u2 − 11uv − v2), and assume

ordp ∆ = ordp(u
2 − 11uv − v2) ≥ 12. Note that in this case p can divide

neither u nor v, as (u, v) = 1. Since c4 = u4− 12u3v+ 14u2v2 + 12uv3 + v4,

by dividing c4 by u2 − 11uv − v2, we have

c4 = (u2 − 11uv − v2)(−4u2 − uv − v2) + 5u3(u− 11v).

If p | c4, then we must have p = 5 or p | (u − 11v) (or both). If p |

(u−11v), then since u2−11uv−v2 = (u−11v)u−v2, we must have p | v, a

contradiction. Thus, in any remaining cases, we have ordp c4 ≤ 1, and hence

the equation is minimal at p. 2

Let E′ be an elliptic curve defined by E′ = E/T . Then E′ is given by a

model

E′ : y2 + (v − u)xy − uv2y

= x3−uvx2+(5uv3−10u2v2−5u3v)x+(uv5−15u2v4+5u3v3−10u4v2−u5v)

(2)

with discriminant ∆′ = uv(u2 − 11uv − v2)5.

Lemma 3.2. The Weierstrass equation (2) with u, v ∈ Z, (u, v) = 1, and

u > 0 is minimal, possibly outside of the prime p = 5.

Proof: As the previous lemma 3.1, we only need to consider for primes p

dividing ∆′ = uv(u2−11uv−v2)5. If p divides uv, then the c4-invariant c′4 of

the equation (2), has order 0 at p. So suppose that p divides u2−11uv−v2.
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In order to show minimality, we can also assume ordp(u
2 − 11uv − v2) ≥ 3.

Note that in this case we have neither p | u nor p | v. Since we have

c′4 = u4 + 228u3v + 494u2v2 − 228uv3 + v4

= (u2 − 11uv − v2)(−3124u2 + 239uv − v2) + 55u3(u− 11v),

and since u2 − 11uv − v2 = (u − 11v)u − v2, we must have p = 5 and

p - (u− 11v). 2

Note when the equation (2) is not minimal modulo p = 5, the minimal

discriminant of the equation is exacly ∆′/512. In order that E′ has a rational

point of order 5 again, the equation must be transformed into the form

E′ : y2 + (V − U)xy − UV 2y = x3 − UV x2 (3)

for some U, V ∈ Z with (U, V ) = 1 and U > 0. Since the equations (2) and

(3) must define the same curve, we can compare their discriminants and

c4-invariants. Since the equation (3) is minimal(Lemma 3.1), we have

uv(u2 − 11uv − v2)5 = 512kU5V 5(U2 − 11UV − V 2) (4)

and

v4−228uv3+494u2v2+228u3v+u4 = 54k(V 4+12UV 3+14U2V 2−12U3V+U4),

(5)

for some k ∈ {0, 1} chosen accordingly whether the equation (2) is minimal

or not.

Let r =
u2 − 11uv − v2

UV
∈ Q. Then we have

UV r = u2 − 11uv − v2,

uvr5 = 512k(U2 − 11UV − V 2).
(6)

Set s = v/u ∈ Q. If we write f(x, y) = x2 − 11xy − y2, then the right hand

side of the equation (5) can be written as 54k(f(U, V )2 + 10UV f(U, V ) +

5U2V 2). We divide both sides of (5) by u4 and considering the formulae (6)
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to obtain

s4 − 228s3 + 494s2 + 228s+ 1

=
54k
(
f(U, V )2 + 10UV f(U, V ) + 5U2V 2

)
u4

=
r2524k

(
f(U, V )2 + 10UV f(U, V ) + 5U2V 2

)
520kr2u4

=
u2v2r12 + 10 · 512kuvf(u, v)r6 + 5 · 524kf(u, v)2

520kr2u4

=
s2r12 + 2 · 512k+1(s− 11s2 − s3)r6 + 524k+1(1− 22s+ 119s2 + 22s3 + s4)

520kr2
.

(7)

By multiplying 520kr2 to both sides of the above equation (7), we get the

Diophantine equation

520kr2
(
s4 − 228s3 + 494s2 + 228s+ 1

)
= s2r12 + 2 · 512k+1(s− 11s2− s3)r6 + 524k+1(1− 22s+ 119s2 + 22s3 + s4).

(8)

Moreover when k = 0, we get a simpler equation

[
−r5s+ 5r4s− 15r3s+ 25r2s− 25rs+ s2 + 11s− 1

]
×
[
r5s+ 5r4s+ 15r3s+ 25r2s+ 25rs+ s2 + 11s− 1

]
×
[
r2 − 5

]
= 0.

Since r ∈ Q, we drop the last factor to get

[
s2 − 1− (r5 − 5r4 + 15r3 − 25r2 + 25r − 11)s

]
×
[
s2 − 1 + (r5 + 5r4 + 15r3 + 25r2 + 25r + 11)s

]
= 0,

so if we make a substitution r + 1 = t or r − 1 = t, the above equation is

equivalent to

s2 + (t4 + 5t2 + 5)st = 1. (9)

Unlike the case k = 0, when k = 1, we cannot reduce the equation (8) to a

simpler one.

In [Ha], Hadano only considered the case k = 0, and made the following

proposition. We slightly modify his proposition to cover all possible cases.
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Proposition 3.3. (Hadano) If a rational elliptic curve E of conductor N

has a rational point P of order 5 and E′ := E/〈P 〉 has a rational point of

order 5 again, then the Diophantine equation (8) has a rational solution in

(r, s) (specially, the Diophantine equation (9) has a rational solution in (s, t)

when k = 0).

We can observe that the Diophantine equation (9) has trivial solutions

(s, t) = (±1, 0) and these trivial solutions correspond to the elliptic curves

E = X1(11) and E′ = X0(11). Based on this observation and Proposition

3.3, Hadano [Ha] conjectured the following.

Conjecture. (Hadano) The Diophantine equation (9) has only trivial so-

lutions (s, t) = (±1, 0). In particular, if a rational elliptic curve E has a

rational point P of order 5 and E′ := E/〈P 〉 has a rational point of order 5

again, then we must have E′ = X0(11) and E = X1(11).

Rubin and Silverberg [RS] considered some families of elliptic curves with

constant mod-p representations. In particular, following Klein, they defined

an elliptic curve Bu over Q(u) as follows:

Bu : y2 = x3 − u20 − 228u15 + 494u10 + 228u5 + 1

48
x

+
u30 + 522u25 − 10005u20 − 10005u10 − 522u5 + 1

864
.

The curveBu has the property thatBu[5] ∼= (Z/5Z)⊕µ5 as Gal(Q(u)/Q(u))-

module. Using this curve, we show that the conjecture of Hadano is not true.

Proposition 3.4. Hadano’s conjecture is not true.

Proof: By substituting a special value u ∈ Q, we get an elliptic curve

defined over Q which has its full 5-torsion subgroup isomorphic to (Z/5Z)⊕

µ5 as Gal(Q/Q)-module. Hence, at least in case that Bu gives a semistable

curve, we have a sequence of elliptic curves with étale isogenies

Bu/µ5 → Bu → Bu/(Z/5Z).

More concretely, if we substitute u = 3, then the curve Bu becomes the

semistable curve ‘185163a2’ in Cremona’s database, and we have

185163a1→ 185163a2→ 185163a3,
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where all arrows indicate étale isogenies. This sequence corresponds to the

solution s = −1/243 and t = −8/3 of the Diophantine equation (9). So

Hadano’s conjecture is not true. 2

Remark. In the case k = 1, we have the following example. Consider

elliptic curve Bu with u = 2. This gives a sequence

‘550k3’→ ‘550k2’→ ‘550k1’.

This curve corresponds to the solution (r, s) = (125/2,−1/32) in the equa-

tion (8).

4. Proof of Theorem 1.1

Let f be the newform associated to an elliptic curve E of conductor N .

Consider the case that N is square-free. For d | N , let Wd be the Atkin-

Lehner involution and let wd = ±1 be such that Wdf = wdf (cf. [AL]). We

note that for primes p | N , wp = −1 or +1 according as the multiplicative

reduction at p is split or non-split, respectively.

Proposition 4.1. Let E0 be the X0(N)-optimal curve of an isogeny class

C of elliptic curves defined over Q of conductor N and l be an odd prime.

Suppose that N is square-free and l - N . If µ` ⊂ E0[`], then there is only

one prime p | N such that wp = −1.

Proof: By Theorem 1.1 in [Va], µ` ⊂ E0[l] must be contained in the

Shimura subgroup Σ(N) of J0(N). By Theorem 1 of [LO], Σ(N) is iso-

morphic to a subgroup of Hom((Z/NZ)×, U), where U is the group of

complex numbers of modulus 1. So µ` is isomorphic to a subgroup of

Hom((Z/pZ)×, U) for a prime p | N such that p ≡ 1 (mod `). We know

that wp = −1 because p ≡ 1 (mod `) implies that E0 has split multiplicative

reduction at p. By Theorem 3 of [LO], Wp acts on µ` by multiplication −1

and Wq acts trivially on µ` for primes q 6= p and q | N . This implies that

wp = −1 and wq = 1 for primes q 6= p and q | N . 2

Proof of Theorem 1.1: The Q-isogeny class of X0(11) consists of 3 elliptic

curves 11a1 = X0(11), 11a2 = X0(11)/(Z/5Z) and 11a3 = X0(11)/µ5 =
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X1(11) (cf. Cremona’s database). So we have rational étale isogenies

11a3→ 11a1→ 11a2.

Hence X0(11)- and X1(11)-optimal curves differ by a 5-isogeny.

Now, let C be an isogeny class of elliptic curves over Q with a square-free

conductor N which is not divisible by 5. Suppose that E0 and E1 differ by

a 5-isogeny. (We can show that E0 and E1 cannot differ by an isogeny of

degree 5n, n > 1.) Then by Vatsal’s theorem (Theorem 2.1), there is an

étale rational 5-isogeny E1 → E0. So E1 contains a rational point of order 5.

By Dummigan’s theorem (Theorem 2.2), E0 also contains a rational point

of order 5 and by taking the quotient by the subgroup it generates, we can

find another curve E′ ∈ C. We know that E′ has no rational 5-torsion points

(cf. [Ke]). So we have the following diagram of curves with étale 5-isogenies:

E1 → E0 → E′.

Since the dual isogeny of E1 → E0 is not étale, the kernel of the dual

isogeny = µ5 ⊂ E0[5].

Suppose that E1 has Weierstrass model given by

y2 + (v − u)xy − uv2y = x3 − uvx2,

where u, v ∈ Z with (u, v) = 1. Since wp = −1 for each prime p dividing uv,

we must conclude that uv is divisible by at most one prime p, by Proposition

4.1. Suppose that uv = ±1. Invoking Hadano’s consideration, our sequence

of curves with étale isogenies E1 → E0 → E′ corresponds to finding a

rational solution (s, t) ∈ Q×Q of equation (9) with an additional condition

of s = v/u = ±1. Since the polynomial equation t4 + 5t2 + 5 does not admit

rational solutions, we must have t = 1 and this solution gives E0 = X0(11)

and E1 = X1(11).

Now, it remains to deal with the case uv = ±p for some prime p. Hadano’s

diophantine equation (9) in this case has the form

p2 ± p(t4 + 5t2 + 5)t = 1. (10)

Changing this equation into a homogeneous form and viewing it mod p, we

easily deduce that it does not admit a rational solution in t ∈ Q. This

proves Theorem 1.1. 2
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Remark. In the proof of (ii) of Theorem 1.1 in [BY2], to prove that if E0

and E1 differ by a 3-isogeny, there is only one prime p | N such that wp = −1,

we used the following commutative diagram (2) on page 7 of [BY2]:

E(Q)tors
λ−−−−→ E(Qp)/E

0(Qp)yψ̂ yψ̂′

J0(N)(Q)tors
λ′−−−−→ ΦN,p,

and injectivity of ψ̂′. But we realize that ψ̂′ is not generally injective though

the map ψ̂ is injective. For example, consider the curve ‘155a1’ in Cremona’s

database of elliptic curves([Cr]). When N = 155 = 5 · 31 and p = 5, the

component group Φ155,5 has order 3 ·25, which is easily obtained from Table

2 of the appendix in [Ma]. Meanwhile the Tamagawa number of ‘155a1’

at p = 5 is 5, which shows that ψ̂′ cannot be injective. However, using

Proposition 4.1 and the fact that µ3 ⊂ E0, we can show that there is only

one prime p | N such that wp = −1.
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