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Abstract. In this note, we construct an infinite family of elliptic curves

E defined over Q whose Mordell-Weil group E(Q) has rank exactly two

under the parity conjecture.

1. Introduction

Let E be an elliptic curve defined over Q. By the rank of E we mean

the rank of the Mordell-Weil group E(Q). For a small positive integer r,

there are many results on the existence of infinitely many elliptic curves of

rank ≥ r. For examples, see [GM] or [RS]. However less is known for the

existence of infinitely many elliptic curves of rank exactly r.

In [BJK], infinitely many elliptic curves of rank exactly one were con-

structed and in [M], Mai proved that under the parity conjecture if p and q

are two primes such that p−q = 24, then the elliptic curves E3pq : x3 +y3 =

3pq have rank exactly two. But we don’t know that there are infinitely many

such primes, though the celebrated work [Z] made a breakthrough.

In this note, we prove the following theorem.

Theorem 1.1. There are infinitely many elliptic curves whose rank is ex-

actly two under the parity conjecture.

The main tools are Mai’s work on cubic twists of elliptic curves [M],

a variant of the binary Goldbach problem for polynomials [BKW] and a

computation of Selmer groups of cubic twists [S].

2. Preliminaries

Let n be a cube free integer and En : y2 = x3 − 2433n2 the elliptic curve.

In [Lemma 2.1, M], Mai proved the following lemma.
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Lemma 2.1. En has integral points if and only if n has one of the following

six forms:

n = ±b(a
2 − b2)
4

or n = ±3a2b− 3b3

24
± a3 − 9ab2

24
for some a, b ∈ Z.

In [Lemma 2.2, BJ], we slightly modified the result of Brüdern, Kawada

and Wooley [Theorem 1, BKW] and obtained the following lemma.

Lemma 2.2. Let f(x) ∈ Z[x] be a polynomial which has a positive leading

coefficient. Let A, B be relatively prime odd integers, and 0 ≤ i, j ≤ 8

integers. If there is at least one integer m such that

2f(m) ≡ Ap+Bq (mod 9)

for some primes p ≡ i and q ≡ j (mod 9), then there are infinitely many

integers m such that

2f(m) = Ap+Bq

for some primes p ≡ i and q ≡ j (mod 9).

Let n = 3s
a∏

i=1

lui
i

c∏
j=1

r
vj
j be the prime decomposition of n such that li ≡ 1

(mod 3) and rj ≡ 2 (mod 3). Let

λ : En(C) −→ En(C)/〈(0,±12m
√
−3)〉 ∼= E′n(C)

be the 3-isogeny and λ′ be its dual. Let Sn be a Selmer group defined by λ

and S′n be the dual Selmer group defined by λ′. From [Théorème 2.9, S], we

have the following lemma.

Lemma 2.3. If n ≡ ±1 (mod 9) (s = 0), li ≡ 1 (mod 9) for all i =

1, · · · , a, rj ≡ −1 (mod 9) for all j = 1, · · · , c, and for all i = 1, · · · , a,

lk for k = 1, · · · , i− 1, i+ 1, · · · , a and rj for j = 1, · · · , c are cubes modulo

li, then Sn ' (Z/3Z)a+c and S′n ' (Z/3Z)a+1.

3. Proof of Theorem 1.1

Proposition 3.1. There are infinitely many primes p,q such that p, q ≡ 8

(mod 9) and the elliptic curve Epq : y2 = x3− 2433p2q2 has a rational point.
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Proof: By Lemma 2.1, Eb3n has integral points if

b3n = b3(16b6 − a2) = −(4b3)(a2 − (4b3)2)

4
for some a, b ∈ Z.

On the other hand, by Lemma 2.2 there are infinitely many b, p ≡ 8 and

q ≡ 8 (mod 9) satisfying 4b3 = p+27q
2 because 8b3 ≡ p + 27q (mod 9) has a

solution. For such infinitely many primes p, q set a = p−27q
2 , then

n = 16b6 − a2 = 27pq.

So Eb333pq has an integral point. Since Eb333pq is isomorphic to Epq over Q,

Epq has a rational point for infinitely many primes p,q such that p, q ≡ 8

(mod 9). 2

Proof of Theorem 1.1. Let LEn(s) be the Hasse-Weil L-function of En and

wn ∈ {1,−1} its root number. Then LEn(s) satisfies the functional equation

N s/2(2π)−sΓ(s)LEn(s) = wnN
(2−s)/2(2π)−(2−s)Γ(2− s)LEn(2− s),

where N is the conductor of En whose divisors are 3 and primes p |n. The

analytic rank of En is the order of vanishing at the central point s = 1 of

LEn(s). The functional equation implies that wn = 1 if and only if the

analytic rank of En is even. The parity conjecture predicts that wn = 1 if

and only if the rank of En is even.

The root number wn can be computed by the following way, due to Birch

and Stephens [BS],

wn =
∏

p prime

wn(p),

where for p 6= 3,

wn(p) =

 −1 if p |n and p ≡ 2 (mod 3)

1 otherwise

and for p = 3,

wn(p) =

 −1 if n ≡ 0, ±2, ±4, (mod 9)

1 otherwise.

Consider Epq constructed in Proposition 3.1. Then the root number wpq

of Epq in Proposition 3.1 is equal to one. So the parity conjecture implies

that the rank of Epq(Q) in Proposition 3.1 is at least 2.
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Since pq > 17, Epq(Q) has no torsion points. So from the following exact

sequences

0 −→
E′pq(Q)[λ′]

λ(Epq(Q))[3]
−→

E′pq(Q)

λ(Epq(Q))
−→ Epq(Q)

3Epq(Q)
−→ Epq(Q)

λ′(E′pq(Q))
−→ 0,

and

0 −→
E′pq(Q)

λ(Epq(Q))
−→ Spq −→ III(Epq/Q)[λ] −→ 0,

0 −→ Epq(Q)

λ′(E′pq(Q))
−→ S′pq −→ III(E′pq/Q)[λ′] −→ 0,

we have that

rankEpq(Q) = dimF3

E′pq(Q)

λ(Epq(Q))
+ dimF3

Epq(Q)

λ′(E′pq(Q))
− 1

≤ dimF3 Spq + dimF3 S
′
pq − 1.

Here we may assume p 6= q for p, q in Proposition 3.1 since there is no

b, p which satisfy 8b3 = 28p. By Lemma 2.3, Epq in Proposition 3.1 has

Spq ' (Z/3Z)2 and S′pq ' (Z/3Z), so the rank of Epq(Q) in Proposition 3.1

is at most 2.

Thus the elliptic curves Epq in Proposition 3.1 have ranks exactly two

under the parity conjecture and the theorem follows.
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