INFINITELY MANY ELLIPTIC CURVES OF RANK EXACTLY TWO

DONGHO BYEON AND KEUNYOUNG JEONG

ABSTRACT. In this note, we construct an infinite family of elliptic curves E defined over $\mathbb Q$ whose Mordell-Weil group $E(\mathbb Q)$ has rank exactly two under the parity conjecture.

1. Introduction

Let E be an elliptic curve defined over \mathbb{Q} . By the rank of E we mean the rank of the Mordell-Weil group $E(\mathbb{Q})$. For a small positive integer r, there are many results on the existence of infinitely many elliptic curves of rank $\geq r$. For examples, see [GM] or [RS]. However less is known for the existence of infinitely many elliptic curves of rank exactly r.

In [BJK], infinitely many elliptic curves of rank exactly one were constructed and in [M], Mai proved that under the parity conjecture if p and q are two primes such that p-q=24, then the elliptic curves $E_{3pq}: x^3+y^3=3pq$ have rank exactly two. But we don't know that there are infinitely many such primes, though the celebrated work [Z] made a breakthrough.

In this note, we prove the following theorem.

Theorem 1.1. There are infinitely many elliptic curves whose rank is exactly two under the parity conjecture.

The main tools are Mai's work on cubic twists of elliptic curves [M], a variant of the binary Goldbach problem for polynomials [BKW] and a computation of Selmer groups of cubic twists [S].

2. Preliminaries

Let n be a cube free integer and $E_n: y^2 = x^3 - 2^4 3^3 n^2$ the elliptic curve. In [Lemma 2.1, M], Mai proved the following lemma.

2010 Mathematics Subject Classification. Primary 11G05; Secondary 11G40.

Lemma 2.1. E_n has integral points if and only if n has one of the following six forms:

$$n = \pm \frac{b(a^2 - b^2)}{4}$$
 or $n = \pm \frac{3a^2b - 3b^3}{24} \pm \frac{a^3 - 9ab^2}{24}$ for some $a, b \in \mathbb{Z}$.

In [Lemma 2.2, BJ], we slightly modified the result of Brüdern, Kawada and Wooley [Theorem 1, BKW] and obtained the following lemma.

Lemma 2.2. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial which has a positive leading coefficient. Let A, B be relatively prime odd integers, and $0 \le i, j \le 8$ integers. If there is at least one integer m such that

$$2f(m) \equiv Ap + Bq \pmod{9}$$

for some primes $p \equiv i$ and $q \equiv j \pmod{9}$, then there are infinitely many integers m such that

$$2f(m) = Ap + Bq$$

for some primes $p \equiv i$ and $q \equiv j \pmod{9}$.

Let $n=3^s\prod_{i=1}^a l_i^{u_i}\prod_{j=1}^c r_j^{v_j}$ be the prime decomposition of n such that $l_i\equiv 1\pmod 3$ and $r_j\equiv 2\pmod 3$. Let

$$\lambda: E_n(\mathbb{C}) \longrightarrow E_n(\mathbb{C})/\langle (0, \pm 12m\sqrt{-3}) \rangle \cong E'_n(\mathbb{C})$$

be the 3-isogeny and λ' be its dual. Let S_n be a Selmer group defined by λ and S'_n be the dual Selmer group defined by λ' . From [Théorème 2.9, S], we have the following lemma.

Lemma 2.3. If $n \equiv \pm 1 \pmod{9}$ (s = 0), $l_i \equiv 1 \pmod{9}$ for all $i = 1, \dots, a$, $r_j \equiv -1 \pmod{9}$ for all $j = 1, \dots, c$, and for all $i = 1, \dots, a$, l_k for $k = 1, \dots, i-1, i+1, \dots, a$ and r_j for $j = 1, \dots, c$ are cubes modulo l_i , then $S_n \simeq (\mathbb{Z}/3\mathbb{Z})^{a+c}$ and $S'_n \simeq (\mathbb{Z}/3\mathbb{Z})^{a+1}$.

3. Proof of Theorem 1.1

Proposition 3.1. There are infinitely many primes p,q such that $p,q \equiv 8 \pmod{9}$ and the elliptic curve $E_{pq}: y^2 = x^3 - 2^4 3^3 p^2 q^2$ has a rational point.

Proof: By Lemma 2.1, E_{b^3n} has integral points if

$$b^3 n = b^3 (16b^6 - a^2) = -\frac{(4b^3)(a^2 - (4b^3)^2)}{4}$$
 for some $a, b \in \mathbb{Z}$.

On the other hand, by Lemma 2.2 there are infinitely many $b, p \equiv 8$ and $q \equiv 8 \pmod{9}$ satisfying $4b^3 = \frac{p+27q}{2}$ because $8b^3 \equiv p + 27q \pmod{9}$ has a solution. For such infinitely many primes p, q set $a = \frac{p-27q}{2}$, then

$$n = 16b^6 - a^2 = 27pq.$$

So $E_{b^33^3pq}$ has an integral point. Since $E_{b^33^3pq}$ is isomorphic to E_{pq} over \mathbb{Q} , E_{pq} has a rational point for infinitely many primes p,q such that $p,q \equiv 8 \pmod{9}$.

Proof of Theorem 1.1. Let $L_{E_n}(s)$ be the Hasse-Weil L-function of E_n and $w_n \in \{1, -1\}$ its root number. Then $L_{E_n}(s)$ satisfies the functional equation

$$N^{s/2}(2\pi)^{-s}\Gamma(s)L_{E_n}(s) = w_n N^{(2-s)/2}(2\pi)^{-(2-s)}\Gamma(2-s)L_{E_n}(2-s),$$

where N is the conductor of E_n whose divisors are 3 and primes $p \mid n$. The analytic rank of E_n is the order of vanishing at the central point s = 1 of $L_{E_n}(s)$. The functional equation implies that $w_n = 1$ if and only if the analytic rank of E_n is even. The parity conjecture predicts that $w_n = 1$ if and only if the rank of E_n is even.

The root number w_n can be computed by the following way, due to Birch and Stephens [BS],

$$w_n = \prod_{p \text{ prime}} w_n(p),$$

where for $p \neq 3$,

$$w_n(p) = \begin{cases} -1 & \text{if } p \mid n \text{ and } p \equiv 2 \pmod{3} \\ 1 & \text{otherwise} \end{cases}$$

and for p = 3,

$$w_n(p) = \begin{cases} -1 & \text{if } n \equiv 0, \pm 2, \pm 4, \pmod{9} \\ 1 & \text{otherwise.} \end{cases}$$

Consider E_{pq} constructed in Proposition 3.1. Then the root number w_{pq} of E_{pq} in Proposition 3.1 is equal to one. So the parity conjecture implies that the rank of $E_{pq}(\mathbb{Q})$ in Proposition 3.1 is at least 2.

Since pq > 17, $E_{pq}(\mathbb{Q})$ has no torsion points. So from the following exact sequences

$$0 \longrightarrow \frac{E'_{pq}(\mathbb{Q})[\lambda']}{\lambda(E_{pq}(\mathbb{Q}))[3]} \longrightarrow \frac{E'_{pq}(\mathbb{Q})}{\lambda(E_{pq}(\mathbb{Q}))} \longrightarrow \frac{E_{pq}(\mathbb{Q})}{3E_{pq}(\mathbb{Q})} \longrightarrow \frac{E_{pq}(\mathbb{Q})}{\lambda'(E'_{pq}(\mathbb{Q}))} \longrightarrow 0,$$

and

$$0 \longrightarrow \frac{E'_{pq}(\mathbb{Q})}{\lambda(E_{pq}(\mathbb{Q}))} \longrightarrow S_{pq} \longrightarrow III(E_{pq}/\mathbb{Q})[\lambda] \longrightarrow 0,$$

$$0 \longrightarrow \frac{E_{pq}(\mathbb{Q})}{\lambda'(E'_{pq}(\mathbb{Q}))} \longrightarrow S'_{pq} \longrightarrow III(E'_{pq}/\mathbb{Q})[\lambda'] \longrightarrow 0,$$

we have that

$$\operatorname{rank} E_{pq}(\mathbb{Q}) = \dim_{\mathbb{F}_3} \frac{E'_{pq}(\mathbb{Q})}{\lambda(E_{pq}(\mathbb{Q}))} + \dim_{\mathbb{F}_3} \frac{E_{pq}(\mathbb{Q})}{\lambda'(E'_{pq}(\mathbb{Q}))} - 1$$

$$\leq \dim_{\mathbb{F}_3} S_{pq} + \dim_{\mathbb{F}_3} S'_{pq} - 1.$$

Here we may assume $p \neq q$ for p, q in Proposition 3.1 since there is no b, p which satisfy $8b^3 = 28p$. By Lemma 2.3, E_{pq} in Proposition 3.1 has $S_{pq} \simeq (\mathbb{Z}/3\mathbb{Z})^2$ and $S'_{pq} \simeq (\mathbb{Z}/3\mathbb{Z})$, so the rank of $E_{pq}(\mathbb{Q})$ in Proposition 3.1 is at most 2.

Thus the elliptic curves E_{pq} in Proposition 3.1 have ranks exactly two under the parity conjecture and the theorem follows.

References

- [BJK] D. Byeon, D. Jeon, and C.H. Kim, Rank one quadratic twists of an infinite family of elliptic curves, J. Reine Angew. Math., 633 (2009), 67-76.
- [BJ] D. Byeon and K. Jeong, Sums of two rational number with many prime factors, preprint.
- [BKW] J. Brüdern, K. Kawada and T. D. Wooley, Additive representation in thin sequences, II: The binary Goldbach problem, Mathematica, 47 (2000), 117-125.
- [BS] B. J. Birch and N. M. Stephens, The parity of the rank of the Modell-Weil group, Topology, 5 (1966), 295–299.
- [GM] F. Gouvea and B. Mazur, The square-free sieve and the rank of elliptic curves, J. Amer. Math. Soc., 4 (1991), 1–23.
- [M] L. Mai, The analytic rank of a family of elliptic curves, Canadian Jour. of Math., 45 (1993), 847–862.

- [RS] K. Rubin and A. Silverberg, Ranks of elliptic curves, Bull. of Amer. Math. Soc., 39 (2002), 455–474.
- [S] P. Satge, Groupes de Selmer et corps cubiques, J. Number Theory, 23 (1986), 294–317.
- [Z] Y. Zhang, Bounded gaps between primes, Annals of Math., 179 (2014), 1121–1174.

Department of Mathematics, Seoul National University, Seoul, Korea

E-mail: dhbyeon@snu.ac.kr

Department of Mathematics, Seoul National University, Seoul, Korea

E-mail: waffiic@snu.ac.kr