SUMS OF TWO RATIONAL CUBES WITH MANY PRIME FACTORS

DONGHO BYEON AND KEUNYOUNG JEONG

Abstract. In this paper, we show that for any given integer $k \geq 2$, there are infinitely many cube-free integers n having exactly k prime divisors such that n is a sum of two rational cubes. This is a cubic analogue of the work of Tian [Ti], which proves that there are infinitely many congruent numbers having exactly k prime divisors for any given integer $k \geq 1$.

1. Introduction and results

Let n be a cube-free integer and $E_n: x^3 + y^3 = n$ the elliptic curve defined over \mathbb{Q} . Let $L_{E_n}(s)$ be the Hasse-Weil L-function of E_n and $w_n \in \{1, -1\}$ its root number. Then $L_{E_n}(s)$ satisfies the functional equation

$$N^{s/2}(2\pi)^{-s}\Gamma(s)L_{E_n}(s) = w_n N^{(2-s)/2}(2\pi)^{-(2-s)}\Gamma(2-s)L_{E_n}(2-s),$$

where N is the conductor of E_n whose divisors are 3 and primes $p \mid n$. The analytic rank of E_n is the order of vanishing at the central point s = 1 of $L_{E_n}(s)$. The functional equation implies that $w_n = 1$ if and only if the analytic rank of E_n is even. The Birch and Swinnerton-Dyer(BSD) conjecture states that the rank of the Mordell-Weil group $E_n(\mathbb{Q})$ is equal to the analytic rank of E_n . So the BSD conjecture implies that if $w_n = -1$, then n is a sum of two rational cubes.

The root number w_n can be computed by the following way, due to Birch and Stephens [BS],

$$w_n = \prod_{p \text{ prime}} w_n(p),$$

The authors were supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2007694).

where for $p \neq 3$,

$$w_n(p) = \begin{cases} -1 & \text{if } p \mid n \text{ and } p \equiv 2 \pmod{3} \\ 1 & \text{otherwise} \end{cases}$$

and for p = 3,

$$w_n(p) = \begin{cases} -1 & \text{if } n \equiv 0, \pm 2, \pm 4, \pmod{9} \\ 1 & \text{otherwise.} \end{cases}$$

In [Sa], Satgé proved that n = 2p, where p is a prime congruent to 2 mod 9 (so $w_n = -1$), and also $n = 2p^2$, where p is a prime congruent to 5 mod 9 (so $w_n = -1$), are sums of two rational cubes. Coward [Co] proved that n = 25p, where p is a prime congruent to 2 mod 9 (so $w_n = -1$), and also $n = 25p^2$, where p is a prime congruent to 5 mod 9 (so $w_n = -1$), are sums of two rational cubes. In [DV], Dasgupta and Voight proved that if p is a prime congruent to 4 or 7 mod 9 (so $w_p = -1$) and 3 is not a cube mod p, then p is a sum of two rational cubes. We note that there are infinitely many such p. Here we mention Sylvester's conjecture which asserts if p is a prime congruent to 4, 7 or 8 mod 9 (so $w_p = -1$), then p is a sum of two rational cubes. For more details and history on Sylvester's conjecture, see [DV].

In this paper, we prove the following theorem.

Theorem 1.1. For any given integer $k \geq 2$ and $e \in \{1, -1\}$, there are infinitely many cube-free integers (in fact, square-free integers) n having exactly k prime divisors such that n is a sum of two rational cubes and $w_n = e$.

In [Ti], Tian has shown that for any given integer $k \geq 1$, there are infinitely many square-free positive integers m such that m is a congruent number and the corresponding elliptic curve $E: y^2 = x^3 - m^2x$ has the root number -1. So Theorem 1.1 for the case $w_n = -1$ is a cubic analogue of the work of Tian.

On the other hand, Coates and Wiles [CW] proved that if n is a sum of two rational cubes, than the analytic rank of E_n is greater than zero. So we immediately have the following corollary from Theorem 1.1 for the case $w_n = 1$.

Corollary 1.2. For any given integer $k \geq 2$, there are infinitely many cubefree integers n having exactly k prime divisors such that the analytic rank of E_n is at least 2.

In [Ma], Mai proved that there are infinitely many cube-free integers n such that the analytic rank of E_n is at least 2, more precisely, the number of cube-free integers $n \leq X$ such that the analytic rank of E_n is even(i.e., $w_n = 1$) and ≥ 2 is at least $CX^{2/3-\epsilon}$, where ϵ is arbitrarily small and C is a positive constant, for X large enough, without consideration of the number of prime divisors of n.

2. Preliminaries

Let n be a cube-free integer and $E_n: x^3 + y^3 = n$. Then E_n has the Weierstrass form $E'_n: y^2 = x^3 - 2^4 3^3 n^2$. We know that all E'_n except for $n = \pm 1$ and ± 2 have no rational torsion(cf. [Si, Exercises 10.19]). In [Ma, Lemma 2.1], Mai proved the following lemma.

Lemma 2.1. E'_n has integral points if and only if n has one of the following six forms:

$$n = \pm \frac{b(a^2 - b^2)}{4}$$
 or $n = \pm \frac{3a^2b - 3b^3}{24} \pm \frac{a^3 - 9ab^2}{24}$ for some $a, b \in \mathbb{Z}$.

To control the root number w_n and the number of prime divisors of n in Lemma 2.1, we slightly modify the result of Brüdern, Kawada and Wooley [BKW, Theorem 1], which is a quantitative strengthening of a theorem of Perelli [Pe].

Lemma 2.2. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial which has a positive leading coefficient with degree k. Let A, B be relatively prime odd integers and i, j positive integers with 0 < i, j < 9 and (i, 9) = (j, 9) = 1. Suppose there is at least one integer m such that

$$2f(m) \equiv Ai + Bj \pmod{9}$$
 and $(AB, 2f(m)) = 1$.

Let $\mathcal{E}_k^{ABij}(N, f)$ be the number of positive integers $n \in [1, N]$ with $2f(n) \equiv Ai + Bj \pmod{9}$ and (AB, f(n)) = 1 for which the equation $2f(n) = Ap_1 + Bp_2$ has no solution in primes $p_1 \equiv i, p_2 \equiv j \pmod{9}$. Then there is an

absolute constant c > 0 such that

$$\mathcal{E}_k^{ABij}(N,f) \ll_f N^{1-\frac{c}{k}},$$

so there are infinitely many integers n such that

$$2f(n) = Ap_1 + Bp_2,$$

for some primes $p_1 \equiv i$ and $p_2 \equiv j \pmod{9}$.

Proof. Let N be a large positive integer, δ a sufficiently small positive real number to be chosen later, X := 2f(N), $P := X^{6\delta}$, Q := X/P and $\kappa := 2^{-\frac{1}{k}}$. Let A, B be positive odd integers and i, j positive integers with 0 < i, j < 9 and (i, 9) = (j, 9) = 1. We define the exponential sum $S_i(\alpha)$ by

$$S_i(\alpha) := \sum_{\substack{P$$

where $e(\alpha p) := e^{2\pi \alpha pi}$ and the summation is over primes p with $P and <math>p \equiv i \pmod{9}$. When $T \subseteq [0, 1]$, we write

$$r_{ABij}(n;T) := \int_{T} S_i(A\alpha)S_j(B\alpha)e(-\alpha n)d\alpha$$

and $r_{ABij}(n) := r_{ABij}(n; [0, 1])$. Then $r_{ABij}(2f(n))$ counts the number of solutions of the equation $2f(n) = Ap_1 + Bp_2$ in primes $p_1 \equiv i$, $p_2 \equiv j \pmod{9}$ with weight $\log p_1 \log p_2$.

Let $\mathfrak{M} \subset [0,1]$ be the major arc defined by

$$\mathfrak{M} = \bigcup_{\substack{0 \le a \le q \le P \\ (a,q)=1}} \mathfrak{M}(q,a),$$

where

$$\mathfrak{M}(q,a) = \left\{ \alpha \in [0,1] : \left| \alpha - \frac{a}{q} \right| \le \frac{P}{qX} \right\}$$

and $\mathfrak{m} \subset [0,1]$ be the minor arc defined by

$$\mathfrak{m} = [0,1] \setminus \mathfrak{M}.$$

First we consider minor arc. Let χ be a Dirichlet character of modulus 9. The orthogonality relations of Dirichlet characters $\sum_{\chi} \bar{\chi}(i)\chi(p) =$

 $\varphi(9)\delta(i,p)$, where the sum is over all Dirichlet characters of modulus 9, and $\delta(i,p)=1$ if $p\equiv i\pmod 9$ and $\delta(i,p)=0$ if $p\not\equiv i\pmod 9$ imply that

$$S_{i}(A\alpha) = \sum_{P
$$\ll \sum_{\chi} \left| \sum_{P$$$$

From the proof of [Va, Theorem 3.1], we have if (a,q) = 1, $q \leq X$ and $|\alpha - a/q| \leq q^{-2}$, then

$$\sum_{P$$

so

$$S_i(A\alpha) \ll (\log X)^4 (Xq^{-1/2} + X^{4/5} + X^{1/2}q^{1/2}).$$

Using this upper bound and the proof of [BKW, Lemma 1], we have the following same result for $r_{ABij}(m)$ on minor arcs;

There is a positive real number $a = a(\delta)$ such that

$$\sum_{\kappa N < n \le N} |r_{ABij}(2f(n); \mathfrak{m})| \ll X N^{1 - \frac{a}{k}}. \tag{1}$$

Now we consider major arc. For a Dirichlet character χ , we define

$$\psi(x,\chi) := \sum_{n \leq x} \chi(n) \Lambda(n) \text{ and } \psi(x,\chi,i) := \sum_{\substack{n \leq x \\ n \equiv i \pmod{9}}} \chi(n) \Lambda(n),$$

where $\Lambda(n)$ is the von Mangoldt function which defined as follows;

$$\Lambda(n) = \begin{cases} \log p & \text{if } n = p^k, \\ 0 & \text{otherwise.} \end{cases}$$

Using the orthogonality relations of Dirichlet characters, we have

$$\psi(x,\chi,i) = \frac{1}{\varphi(9)} \sum_{n \le x} (\sum_{\chi'} \bar{\chi'}(i)\chi'(n))\chi(n)\Lambda(n) = \frac{1}{\varphi(9)} \sum_{\chi'} \bar{\chi'}(i)\psi(x,\chi \cdot \chi'),$$

where χ' varies in the set of Dirichlet characters of modulus 9 and $\chi \cdot \chi'(n) := \chi(n)\chi'(n)$. From the proof of [Ga, Theorem 7], we have for $q \leq T \leq x^{\frac{1}{2}}$,

$$\psi(x,\chi,i) = \frac{1}{\varphi(9)} \sum_{\chi'} \bar{\chi'}(i) (\delta_{\chi \cdot \chi'} x - \sum_{\rho} \frac{x^{\rho}}{\rho}) + O(\frac{x \log^2 x}{T})$$

and

$$\sum_{q \le P} \sum_{\chi}^{*} \sum_{p \equiv i \pmod{9}}^{x+h} \chi(p) \log p \ll h(\sum_{q \le P} \sum_{\chi}^{*} \sum_{\chi'} \sum_{\rho} x^{\beta-1} + \frac{P^4}{T}),$$

where $\rho = \beta + \gamma i$ varies in the set of zeros of $L(s, \chi \cdot \chi')$ with $0 \leq \text{Re}(\rho) \leq 1$, $|\text{Im}(\rho)| \leq T$ and \sum^* denotes that the sum is taken over all primitive Dirichlet characters of modulus q. From the proof of [Ga, Theorem 7], additional computations and the argument below [MV, Lemma 4.3], we have the following modification of [MV, Lemma 4.3];

For suitable (small) positive absolute constants c_1 , c_2 ,

$$\sum_{q \le P} \sum_{\chi} \max_{x \le N} \max_{h \le N} (h + \frac{N}{P})^{-1} \left| \sum_{\substack{x = h \\ p \equiv i \pmod{9}}}^{x} \chi(p) \log p \right| \ll \exp\left(-c_1 \frac{\log N}{\log P}\right) \tag{2}$$

provided $\exp(\log^{\frac{1}{2}} N) \leq P \leq N^{c_2}$. Here \sum^{\sharp} indicates that the term with q=1 is to be

$$\sum_{\substack{x-h \ p \equiv i \pmod{9}}}^{x} \log p - \sum_{\substack{x-h < n \le x \ n > 0 \\ n \equiv i \pmod{9}}} 1$$

and that if there is an exceptional character $\tilde{\chi}$ then the corresponding term is

$$\sum_{\substack{x-h\\p\equiv i\pmod{9}}}^x \tilde{\chi}(p)\log p + \sum_{\substack{x-h < n \leq x\\n>0\\n\equiv i\pmod{9}}} n^{\tilde{\beta}-1},$$

where $\tilde{\beta}$ is the (unique) exceptional zero of $L(s, \tilde{\chi})$. If the exceptional character occurs, the right hand side of (2) may be reduced by a factor of $(1 - \tilde{\beta}) \log P$.

For a Dirichlet character χ of modulus q, we define

$$S_i(\chi, \eta) := \sum_{\substack{P$$

and

$$T_i(\eta) := \sum_{\substack{P < n \le X \\ n \equiv i \pmod{9}}} e(n\eta), \qquad \widetilde{T}_i(\eta) := -\sum_{\substack{P < n \le X \\ n \equiv i \pmod{9}}} n^{\widetilde{\beta} - 1} e(n\eta),$$

where the last one is defined only if there is an exceptional character.

Let χ_0 be the principal character modulo q. Define

$$W_i(\chi, \eta) := \begin{cases} S_i(\chi, \eta) - T_i(\eta) & \text{if } \chi = \chi_0, \\ S_i(\chi, \eta) - \widetilde{T}_i(\eta) & \text{if } \chi = \widetilde{\chi}\chi_0, \\ S_i(\chi, \eta) & \text{otherwise.} \end{cases}$$

Suppose that a Dirichlet character $\chi \pmod{q}$ is induced by a primitive character $\chi^* \pmod{r}$. Put

$$W_i^A(\chi) = \left(\int_{-\frac{1}{rQ}}^{\frac{1}{rQ}} |W_i(\chi, A\eta)|^2 \, d\eta \right)^{\frac{1}{2}} \quad \text{and} \quad W_i^A = \sum_{q \le P} \sum_{\chi} {}^*W_i^A(\chi).$$

Applying [MV, Lemma 4.2] to the real numbers

$$u_n := \begin{cases} \chi(p) \log p & \text{if } n = Ap, \ P$$

we get

$$\begin{split} W_i^A(\chi) & \ll & (\int_0^{2AX} \left| \frac{1}{qQ} \sum_{\substack{P$$

Then using the above modification of [MV, Lemma 4.3], we have the following modification of [MV, (7.1) and $(7.\tilde{1})$];

If there is no exceptional character,

$$W_i^A \ll X^{\frac{1}{2}} \exp(-c_3 \frac{\log X}{\log P}),$$

and if the exceptional character occurs,

$$W_i^A \ll X^{\frac{1}{2}} (1 - \tilde{\beta}) \log P \exp(-c_3 \frac{\log X}{\log P}).$$

For $\alpha \in \mathfrak{M}(q,a)$ we write $\alpha = \frac{a}{q} + \eta$ for (a,q) = 1, $-\frac{1}{qQ} \leq \eta < \frac{1}{qQ}$ and q < P. For a character χ of modulus q, let $\tau(\chi) = \sum_{n=1}^{q} \chi(n) e(\frac{n}{q})$ be the Gaussian sum. For integers $C, D \in \{A, B, q, n, 2f(n)\}$, we define $C_D := \frac{C}{(C,D)}$. Using arguments in [MV, Section 6], we have

$$S_i(A\alpha) = \frac{\mu(q_A)}{\varphi(q_A)} T_i(A\eta) + \frac{1}{\varphi(q_A)} \sum_{\chi} \chi(A_q a) \tau(\bar{\chi}) W_i(\chi, A\eta), \qquad (3)$$

where the sum is over all Dirichlet characters χ of modulus q_A , unless there is an exceptional character of modulus \tilde{r} , in which case $\tilde{r}|q_A$ then we obtain an additional term

$$\frac{\widetilde{\chi}(A_q a)\tau(\widetilde{\chi}\chi_0)}{\varphi(q_A)}\widetilde{T}_i(A\eta)$$

on the right hand side of (3).

First we assume that there is no exceptional character. Let $n \in (\kappa N, N]$ be an integer with $2f(n) \equiv Ai + Bj \pmod{9}$ and (AB, f(n)) = 1. For simplicity, we define

$$\begin{array}{lcl} t_{i}^{A}t_{j}^{B}(\eta) & := & T_{i}(A\eta)T_{j}(B\eta)e(-2f(n)\eta), \\ t_{i}^{A}w_{j}^{B}(\eta) & := & T_{i}(A\eta)W_{j}(\chi',B\eta)e(-2f(n)\eta), \\ t_{j}^{B}w_{i}^{A}(\eta) & := & T_{j}(B\eta)W_{i}(\chi,A\eta)e(-2f(n)\eta), \\ w_{i}^{A}w_{i}^{B}(\eta) & := & W_{i}(\chi,A\eta)W_{j}(\chi',B\eta)e(-2f(n)\eta), \end{array}$$

where χ and χ' are characters of modulus of q_A and q_B , respectively. Then we have

$$r_{ABij}(2f(n);\mathfrak{M})$$

$$= \sum_{q \leq P} \frac{\mu(q_A)\mu(q_B)}{\varphi(q_A)\varphi(q_B)} c_q(-2f(n)) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_i^A t_j^B(\eta) d\eta \qquad (4)$$

$$+ \sum_{q \leq P} \frac{\mu(q_A)}{\varphi(q_A)\varphi(q_B)} \sum_{\chi'} \chi'(B_q) c_{\chi'}(-2f(n)) \tau(\bar{\chi}') \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_i^A w_j^B(\eta) d\eta \qquad (5)$$

$$+ \sum_{q \leq P} \frac{\mu(q_B)}{\varphi(q_A)\varphi(q_B)} \sum_{\chi} \chi(A_q) c_{\chi}(-2f(n)) \tau(\bar{\chi}) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_j^B w_i^A(\eta) d\eta \qquad (6)$$

$$+ \sum_{q \leq P} \frac{1}{\varphi(q_A)\varphi(q_B)} (\sum_{\chi,\chi'} \chi(A_q) \chi'(B_q) c_{\chi\chi'}(-2f(n)) \tau(\bar{\chi}) \tau(\bar{\chi}')$$

$$\times \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} w_i^A w_j^B(\eta) d\eta), \qquad (7)$$

where $c_q(m) = \sum_{(a,q)=1}^q e(\frac{am}{q})$ and $c_*(m) := \sum_{h=1}^q *(h)e(\frac{hm}{q})$ (We remark that h goes from 1 to q though the modulus of * is a divisor of q.).

Using [MV, Lemma 5.5] and arguments in [MV, Section 6], we have

$$(5) \ll X^{\frac{1}{2}} \sum_{q \leq P} \sum_{\chi'} \left| \frac{\mu(q_A) \chi'(B_q) c_{\chi'}(-2f(n)) \tau(\bar{\chi'})}{\varphi(q_A) \varphi(q_B)} \right| \left(\int_{-\frac{1}{r_Q}}^{\frac{1}{r_Q}} \left| W_j(\chi', B\eta) \right|^2 d\eta \right)^{\frac{1}{2}}$$

$$\ll X^{\frac{1}{2}} \sum_{q \leq P} \sum_{\chi'} \left| \frac{c_{\chi'}(-2f(n)) \tau(\bar{\chi'})}{\varphi(q)^2} \right| \left(\int_{-\frac{1}{r_Q}}^{\frac{1}{r_Q}} \left| W_j(\chi', B\eta) \right|^2 d\eta \right)^{\frac{1}{2}}$$

$$\ll \frac{2f(n)}{\varphi(2f(n))} W_j^B X^{\frac{1}{2}}.$$

By the same method, we have

$$(6) \ll \frac{2f(n)}{\varphi(2f(n))} W_i^A X^{\frac{1}{2}} \quad \text{and} \quad (7) \ll \frac{2f(n)}{\varphi(2f(n))} W_i^A W_j^B.$$

Now we consider the term (4). Assume harmless conditions qQ > 18A and $A \ge B$. Then we have

$$\int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_i^A t_j^B(\eta) d\eta = \int_{-\frac{1}{18}}^{\frac{1}{18}} t_i^A t_j^B(\eta) d\eta - \int_{-\frac{1}{18A}}^{\frac{1}{18}} t_i^A t_j^B(\eta) d\eta - \int_{-\frac{1}{18}}^{-\frac{1}{18A}} t_i^A t_j^B(\eta) d\eta - \int_{-\frac{1}{18A}}^{-\frac{1}{18A}} t_i^A t_j^B(\eta) d\eta - \int_{-\frac{1}{18A}}^{-\frac{1}{18A}} t_i^A t_j^B(\eta) d\eta - \int_{-\frac{1}{18A}}^{-\frac{1}{18A}} t_i^A t_j^B(\eta) d\eta.$$

By the same argument for [MV, (6.10)], we have

$$\int_{\frac{1}{qQ}}^{\frac{1}{18A}} t_i^A t_j^B(\eta) d\eta \ll qQ.$$

By elementary computation, we have

$$\int_{-\frac{1}{18}}^{\frac{1}{18}} t_i^A t_j^B(\eta) d\eta = \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} \frac{1}{9} = \frac{2f(n)}{9^3 AB} + O(P)$$

and

$$\begin{split} \int_{\frac{1}{18A}}^{\frac{1}{18}} t_i^A t_j^B(\eta) d\eta &= \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} (\frac{1}{18} - \frac{1}{18A}) + O(\log X) \\ &= (\frac{1}{18} - \frac{1}{18A}) \frac{2f(n)}{9^2 AB} + O(P). \end{split}$$

Thus we have

$$\int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_i^A t_j^B(\eta) d\eta = \frac{2f(n)}{9^3 AB} - 2(\frac{1}{18} - \frac{1}{18A}) \frac{2f(n)}{9^2 AB} + O(qQ).$$

Using the above estimation for the integral in (4) and arguments for [MV, (6.12), (6.13), (6.14)], we have the following estimation for the term (4);

$$(4) = \mathfrak{S}_{A,B}(2f(n))\frac{2f(n)}{9^3A^2B} + O(X^{1+\delta}P^{-1}),$$

where $\mathfrak{S}_{A,B}(n) = \sum_{q=1}^{\infty} \frac{\mu(q_A)\mu(q_B)}{\varphi(q_A)\varphi(q_B)} c_q(-n)$.

Finally, combining the above bounds for (5), (6), (7) and the above estimation for (4), we have the following modification of [MV, (6.17)];

$$r_{ABij}(2f(n);\mathfrak{M}) = \mathfrak{S}_{A,B}(2f(n))\frac{2f(n)}{9^{3}A^{2}B} + O(X^{1+\delta}P^{-1}) + O(\frac{2f(n)}{\varphi(2f(n))}(W_{i}^{A}X^{\frac{1}{2}} + W_{j}^{B}X^{\frac{1}{2}} + W_{i}^{A}W_{j}^{B})).$$
(8)

Since A, B and 2f(n) are pairwise relatively prime, we have

$$\begin{split} \mathfrak{S}_{A,B}(2f(n)) & = & \prod_{p} (1 + \frac{\mu(p_A)\mu(p_B)\mu(p_{(2f(n))})\varphi(p)}{\varphi(p_A)\varphi(p_B)\varphi(p_{(2f(n))})}) \\ & = & \prod_{p|AB(2f(n))} (1 + \frac{1}{\varphi(p)}) \prod_{p \nmid AB(2f(n))} (1 - \frac{1}{\varphi(p)^2}) \end{split}$$

and by [BKW, (15)]

$$\mathfrak{S}_{A,B}(2f(n)) = c_{A,B}\mathfrak{S}_{1,1}(2f(n)) \ge c_{A,B}\frac{2f(n)}{\varphi(2f(n))}$$

for a constant $c_{A,B}$ depending only on A, B. From the above modification of [MV, (7.1)], the third term of the right hand side of (8) is less then $\frac{6f(n)}{\varphi(2f(n))}Xe^{-\frac{c_3}{6\delta}}$. If we choose a sufficiently small positive real number δ , then $r_{ABij}(2f(n);\mathfrak{M}) \geq (\frac{c_{A,B}}{9^3A^2B} - c_4)\mathfrak{S}(2f(n))(2f(n))$. This implies that $r_{ABij}(2f(n);\mathfrak{M}) \gg X$.

Next we assume that there is the exceptional character. Let $n \in (\kappa N, N]$ be an integer with $2f(n) \equiv Ai + Bj \pmod{9}$ and (AB, f(n)) = 1. For simplicity, we define

$$\begin{split} \widetilde{t}_i^A \widetilde{t}_j^B(\eta) &:= \widetilde{T}_i(A\eta) \widetilde{T}_j(B\eta) e(-2f(n)\eta), \\ t_i^A \widetilde{t}_j^B(\eta) &:= T_i(A\eta) \widetilde{T}_j(B\eta) e(-2f(n)\eta), \\ \widetilde{t}_i^A t_j^B(\eta) &:= \widetilde{T}_i(A\eta) T_j(B\eta) e(-2f(n)\eta), \\ \widetilde{t}_i^A w_j^B(\eta) &:= \widetilde{T}_i(A\eta) W_j(\chi', B\eta) e(-2f(n)\eta), \\ \widetilde{t}_i^B w_i^A(\eta) &:= \widetilde{T}_j(B\eta) W_i(\chi, A\eta) e(-2f(n)\eta), \end{split}$$

where χ and χ' are characters of modulus of q_A and q_B , respectively. Then we have the following possible additional terms in $r_{ABij}(2f(n);\mathfrak{M})$;

$$\sum_{\substack{q \le P \\ \tilde{r} \mid q_{A,q_B}}} \frac{\tau(\tilde{\chi}\chi_0)\tau(\tilde{\chi}\chi_0')}{\varphi(q_A)\varphi(q_B)} \tilde{\chi}(A_q B_q) c_q(-2f(n)) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \tilde{t}_i^A \tilde{t}_j^B(\eta) d\eta \tag{9}$$

$$+ \sum_{\substack{q \le P \\ \tilde{r} \mid q_B}} \frac{\mu(q_A)\tau(\tilde{\chi}\chi'_0)}{\varphi(q_A)\varphi(q_B)} \tilde{\chi}(B_q) c_{\tilde{\chi}\chi'_0}(-2f(n)) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_i^A \tilde{t}_j^B(\eta) d\eta \tag{10}$$

$$+ \sum_{\substack{q \le P \\ \tilde{r} \mid q_A}} \frac{\mu(q_B)\tau(\tilde{\chi}\chi_0)}{\varphi(q_A)\varphi(q_B)} \tilde{\chi}(A_q) c_{\tilde{\chi}\chi_0}(-2f(n)) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \tilde{t}_i^A t_j^B(\eta)) d\eta \tag{11}$$

$$+ \sum_{\substack{q \le P \\ \tilde{\tau} \mid q_A}} \frac{\tilde{\chi}(B_q)\tau(\tilde{\chi}\chi_0)}{\varphi(q_A)\varphi(q_B)} \left(\sum_{\chi} c_{\tilde{\chi}\chi}(-2f(n))\tau(\bar{\chi})\chi(A_q) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \tilde{t}_j^B w_i^A(\eta)d\eta\right)$$
(12)

$$+ \sum_{\substack{q \leq P \\ \tilde{\tau} \mid q_B}} \frac{\tilde{\chi}(A_q)\tau(\tilde{\chi}\chi'_0)}{\varphi(q_A)\varphi(q_B)} \left(\sum_{\chi'} c_{\tilde{\chi}\chi'}(-2f(n))\tau(\bar{\chi'})\chi'(B_q) \int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \tilde{t}_i^A w_j^B(\eta) d\eta\right). \tag{13}$$

By the same arguments for (5) and (6), we have

$$(12) \ll \frac{2f(n)}{\varphi(2f(n))} W_i^A X^{\frac{1}{2}} \quad \text{ and } \quad (13) \ll \frac{2f(n)}{\varphi(2f(n))} W_j^B X^{\frac{1}{2}}.$$

Now we consider the first three terms (9), (10), (11). For the integral in (9), we have

$$\int_{\frac{1}{18A}}^{\frac{1}{18}} \tilde{t}_i^A \tilde{t}_j^B(\eta) d\eta = \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} (kl)^{\tilde{\beta} - 1} (\frac{1}{18} - \frac{1}{18A}) + O(\log X)$$

and by the same argument for the estimation of the integral in (4), we have

$$\int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \widetilde{t}_{i}^{A} \widetilde{t}_{j}^{B}(\eta) d\eta = \widetilde{I}_{ij}^{AB} - 2 \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} (kl)^{\widetilde{\beta} - 1} (\frac{1}{18} - \frac{1}{18A}) + O(qQ),$$

where

$$\widetilde{I}_{ij}^{AB} := \int_{-\frac{1}{18}}^{\frac{1}{18}} \widetilde{t}_{i}^{A} \widetilde{t}_{j}^{B}(\eta) d\eta = \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} (kl)^{\widetilde{\beta} - 1} (\frac{1}{9}).$$

Similarly, for the integral in (10), we have

$$\int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} t_i^A \widetilde{t}_j^B(\eta) d\eta = \widetilde{J}_{ij}^{AB} - 2 \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} (l)^{\tilde{\beta} - 1} (\frac{1}{18} - \frac{1}{18A}) + O(qQ),$$

where $\widetilde{J}_{ij}^{AB} := \int_{-\frac{1}{18}}^{\frac{1}{18}} t_i^A \widetilde{t}_j^B(\eta) d\eta$ and for the integral in (11), we have

$$\int_{-\frac{1}{qQ}}^{\frac{1}{qQ}} \widetilde{t}_{i}^{A} t_{j}^{B}(\eta) d\eta = \widetilde{J}_{ji}^{BA} - 2 \sum_{\substack{P < k, l \le X \\ k \equiv i, l \equiv j \\ Ak + Bl = 2f(n)}} (k)^{\tilde{\beta} - 1} (\frac{1}{18} - \frac{1}{18A}) + O(qQ),$$

where $\widetilde{J}_{ji}^{BA} := \int_{-\frac{1}{18}}^{\frac{1}{18}} \widetilde{t}_i^A t_j^B(\eta) d\eta$.

Using the arguments for [MV, (6.19), (6.16)], we have

$$(9) + (10) + (11) = \widetilde{\mathfrak{S}}_{A,B}(2f(n)) \frac{\widetilde{I}_{ij}^{AB}}{A}$$

$$+ O(\frac{\widetilde{\chi}(2f(n))^{2}\widetilde{r} \cdot 2f(n)X}{\varphi(\widetilde{r})^{2}\varphi(2f(n))}) + O(X^{1+\delta}P^{-1}(2f(n),\widetilde{r})),$$

where
$$\widetilde{\mathfrak{S}}_{A,B}(n) := \sum_{\substack{q=1\\ \widetilde{r}|q_A,q_B}}^{\infty} \frac{\tau(\widetilde{\chi}\chi_0)\tau(\widetilde{\chi}\chi_0')}{\varphi(q_A)\varphi(q_B)} \widetilde{\chi}(A_qB_q)c_q(-n)$$
. Since A, B and

2f(n) are pairwise relatively prime and one of the Gaussian sums in $\widetilde{\mathfrak{S}}_{A,B}(n)$ vanishes when q/\tilde{r} and \tilde{r} are not relatively prime, we have

$$= \frac{\tilde{\mathfrak{S}}_{A,B}(2f(n))}{\frac{\tilde{\chi}(-1)\tilde{r}}{\varphi(\tilde{r})\varphi(\tilde{r}_{2f(n)})} \prod_{\substack{p\nmid \tilde{r}\\p \mid AB}} (1+\frac{\tilde{\chi}(p)}{\varphi(p)}) \prod_{\substack{p\nmid \tilde{r}\\p \mid 2f(n)}} (1+\frac{1}{\varphi(p)}) \prod_{\substack{p\nmid \tilde{r}\\p \nmid 2f(n)}} (1-\frac{1}{\varphi(p)^2}).$$

Finally, combining all the above estimations, we have the following modification of [MV, (6.17)];

$$r_{ABij}(2f(n);\mathfrak{M}) = \mathfrak{S}_{A,B}(2f(n))\frac{2f(n)}{9^{3}A^{2}B} + \widetilde{\mathfrak{S}}_{A,B}(2f(n))\frac{\widetilde{I}_{ij}^{AB}}{A} + O(\frac{\widetilde{\chi}(2f(n))^{2}\widetilde{r} \cdot 2f(n)X}{\varphi(\widetilde{r})^{2}\varphi(2f(n))}) + O(X^{1+\delta}P^{-1}(2f(n),\widetilde{r})) + O(\frac{2f(n)}{\varphi(2f(n))}(W_{i}^{A}X^{\frac{1}{2}} + W_{j}^{B}X^{\frac{1}{2}} + W_{i}^{A}W_{j}^{B})).$$
(14)

If $(2f(n), \tilde{r}) = 1$, the fourth term of the right hand side of (14) is less than $X^{1-5\delta}$ and

$$\widetilde{\mathfrak{S}}_{A,B}(2f(n)) \ll \frac{\widetilde{r}}{\varphi(\widetilde{r})^2} \prod_{\substack{p \nmid \widetilde{r} \\ p \mid 2f(n)}} (1 + \frac{1}{\varphi(p)}) \ll \frac{\widetilde{r} \cdot 2f(n)}{\varphi(\widetilde{r})^2 \varphi(2f(n))} = o(1),$$

so using arguments in [MV, Section 8] and the above modification of [MV, $(7.\tilde{1})$], we have $r_{ABij}(2f(n);\mathfrak{M}) \gg X$. Since

$$|\widetilde{\mathfrak{S}}_{A,B}(2f(n))| \leq \mathfrak{S}_{A,B}(2f(n)) \prod_{\substack{p\nmid \tilde{r}\\p\mid AB\\ \tilde{\chi}(p)=-1}} (\frac{p-2}{p}) \prod_{\substack{p\mid \tilde{r}\\p\nmid 2f(n)AB}} \frac{1}{(p-2)}, \ (15)$$

using arguments in [BKW, p.122–123], we have that if $1 < (2f(n), \tilde{r}) \le Y$,

$$r_{ABij}(2f(n);\mathfrak{M})\gg \left\{ egin{array}{ll} X & ext{if } \mathcal{P}
eq\varnothing, \ XY^{-rac{1}{2}}(\log X)^{-1} & ext{if } \mathcal{P}=\varnothing, \end{array}
ight.$$

where \mathcal{P} is the set of primes in the products of (15). Finally there are at most $O(N^{1+\epsilon}Y^{-1})$ possible exceptions n with $(2f(n), \tilde{r}) > Y$. Thus we have the following analogue of [BKW, Lemma 2];

Suppose that Y is a real number with $1 \le Y \le X^{\frac{\delta}{k}}$. Then one has

$$r_{ABii}(2f(n); \mathfrak{M}) \gg XY^{-\frac{1}{2}}(\log X)^{-1}$$
 (16)

for all $n \in (\kappa N, N]$ with $2f(n) \equiv Ai + Bj \pmod{9}$ and (AB, f(n)) = 1 with the possible exception of $O(N^{1+\epsilon}Y^{-1})$ values of n.

We note that if there is at least one integer m such that $2f(m) \equiv Ai + Bj$ (mod 9) and (AB, 2f(m)) = 1, the set of $n \in (\kappa N, N]$ with $2f(n) \equiv Ai + Bj$ (mod 9) and (AB, f(n)) = 1 has a positive density in the set of $n \in (\kappa N, N]$. Now Lemma 2.2 follows from (1), (16) and the proof of [BKW, Theorem 1].

3. Proof of Theorem 1.1

In this section, for convenience' sake, we assume that n is a square-free. However, the method used in this section can easily be modified to cube-free integers n though it is more complicated to state. **Lemma 3.1.** Let n > 0 be a square-free integer. Then

$$w_n = \begin{cases} +1 & \text{if } n \equiv 1, 2, 3 \text{ or } 5 \pmod{9} \\ -1 & \text{if } n \equiv 4, 6, 7 \text{ or } 8 \pmod{9}. \end{cases}$$

Proof. Write the prime factorization of n in the form

$$n = 3^{\alpha} \prod_{p_i \equiv 1 \pmod{3}} p_i \prod_{q_j \equiv 2 \pmod{3}} q_j,$$

where $\alpha = 0$ or 1 and p_i , q_j are distinct primes.

Let a_n be the number of $q_j \equiv 2 \pmod{3}$. Then the computation of root number w_n of E_n in Section 1 gives the following condition.

$$w_n = -1$$
 if and only if (i) $n \equiv \pm 1, \pm 3 \pmod{9}$ and a_n is odd, or
 (ii) $n \equiv \pm 2, \pm 4 \pmod{9}$ and a_n is even.

We note that $(\prod_{p_i \equiv 1 \pmod{3}} p_i \prod_{q_j \equiv 2 \pmod{3}} q_j) \equiv 2 \pmod{3}$ if and only if a_n is odd. Then we have the following table and complete the proof of the lemma.

$n \pmod{9}$	1	2	3	4	5	6	7	8
a_n	even	odd	even	even	odd	odd	even	odd
w_n	+1	+1	+1	-1	+1	-1	-1	-1

Proposition 3.2. For any given $k \geq 2$ and $r \in \{1, 2, 4, 5, 7, 8\}$, there are infinitely many square-free integer n > 0 having exactly k prime divisors such that n is a sum of two rational cubes and $n \equiv r \pmod{9}$. For $r \in \{3, 6\}$, the same statement holds for $k \geq 3$.

Proof. By Lemma 2.1, we know that for nonzero $a,b \in \mathbb{Z}$, $16b^6 - a^2$ is a sum of two rational cubes because $b^3(16b^6 - a^2) = -\frac{(4b^3)(a^2 - (4b^3)^2)}{4}$. Let

$$A = \prod_{i=1}^{l} p_i$$
, for fixed primes $p_i \equiv 1 \pmod{9}$, $B = 27$,

where $l \geq 0$ is a fixed integer (if l = 0, then A = 1).

We note that $b^3 \equiv 0$ or $\pm 1 \pmod{9}$ for any integer b. Since there is an integer b such that $8b^3 \equiv 8A + 8B \pmod{9}$ and $(AB, 8b^3) = 1$, Lemma 2.2 ensures that there are infinitely many integers b that satisfy the equation

$$4b^3 = \frac{Ap + Bq}{2},$$

for some primes $p \equiv 8$ and $q \equiv 8 \pmod{9}$. If p = q, then $8b^3 = Ap + 27p$, so $8p^2c^3 = A + 27$ for some positive integer c. Thus there are only finitely many p, q such that p = q and we may assume $p \neq q$.

Let $a = \frac{Ap - Bq}{2} \in \mathbb{Z}$. Then $16b^6 - a^2 = ABpq = 27Apq$ is a sum of two rational cubes having exactly (l+3) prime divisors because $p, q \nmid A, B$. Hence Apq is a square-free integer having exactly (l+2) prime divisors such that Apq is sum of two rational cubes and $Apq \equiv 1 \pmod{9}$. This proves the theorem for the case of r = 1. If we set $q \equiv 7, 5, 4$ and 2 (mod 9), then the theorem for the cases of r = 2, 4, 5, and 7 follows.

For the case r = 8 and $k \ge 3$, set

$$A = \prod_{i=1}^{l} p_i$$
, for fixed primes $p_1 \equiv 2, p_2, \dots, p_l \equiv 1 \pmod{9}$, $B = 27$

and let p, q be primes such that $p \equiv 5$, $q \equiv 8 \pmod{9}$. For the case r = 8 and k = 2, set

$$A = 1, B = 27$$

and let p, q be primes such that $p \equiv 8$, $q \equiv 1 \pmod{9}$. Then the theorem for the case r = 8 follows.

For the case r = 3, let

$$A = \prod_{i=1}^{l} p_i$$
, for fixed primes $p_i \equiv 1 \pmod{9}$, $B = 81$,

where $l \geq 0$ is a fixed integer (if l = 0, then A = 1) and let p, q be primes such that $p \equiv 8$, $q \equiv 8 \pmod{9}$ Then 3Apq is a square-free integer having exactly (l+3) prime divisors such that 3Apq is sum of two rational cubes and $3Apq \equiv 3 \pmod{9}$. This proves the theorem for the case of r = 3. Finally, if we set $q \equiv 7 \pmod{9}$, then the theorem for the case r = 6 follows and the proof of the theorem is completed.

Proof of Theorem 1.1. Lemma 3.1 and Proposition for the case r = 4, 7, 8 implies Theorem 1.1 for the case $w_n = -1$. Lemma 3.1 and Proposition for the case r = 1, 2, 5 implies Theorem 1.1 for the case $w_n = 1$.

Acknowledgment. The authors thank Ye Tian, Trevor Wooley, and John Voight for many useful discussions and comments. The authors also thank the referees for their careful readings and many valuable suggestions.

References

- [BS] B. J. Birch and N. M. Stephens, The parity of the rank of the Modell-Weil group, Topology, 5 (1966), 295–299.
- [BKW] J. Brüdern, K. Kawada and T. D. Wooley, Additive representation in thin sequences, II: The binary Goldbach problem, Mathematika, 47 (2000), 117–125.
- [CW] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math., 39 (1977), 223–251.
- [Co] D. Coward, Some sums of two rational cubes, Quat. J. Math., 51 (2000), 451–464.
- [DV] S. Dasgupta and J. Voight, Heegner points and Sylvester's conjecture, Arithmetic Geometry, Clay Math. Proc., 8 (2009), 91–102.
- [Ga] P. X. Gallagher, A large sieve density estimate near $\sigma=1$, Invent. Math. 11, (1970), 329–339.
- [Ma] L. Mai, The analytic rank of a family of elliptic curves, Canadian J. of Math., 45 (1993), 847–862.
- [MV] H. L. Montgomery and R. C. Vaughan, The exceptional set in Goldbach's problem, Acta Arith. 27 (1975), 353–370.
- [Pe] A. Perelli, Goldbach numbers represented by polynomials, Rev. Mat. Iberoamericana, 12 (1996), 349–361.
- [Sa] P. Satgé, Un analogue du calcul de Heegner, Invent. Math., 87 (1987), 425–439.
- [Si] J. H. Silverman, The arithmetic of ellipitic curves, Grad. Texts in Math. 106, Springer-Verlag, New York, 1986.
- [Ti] Y. Tian, Congruent numbers and Heegner points, Cambridge J. of Math., 2 (2014), 117–161.
- [Va] R. C. Vaughan, The Hardy-Littlewood Method (2nd edn.), Cambridge University Press, Cambridge, 1997.

Department of Mathematics, Seoul National University, Seoul, Korea E-mail: dhbyeon@snu.ac.kr

Department of Mathematics, Seoul National University, Seoul, Korea E-mail: waffiic@snu.ac.kr