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Abstract. In this paper, we show that for any given integer k ≥ 2, there are

infinitely many cube-free integers n having exactly k prime divisors such that n is a

sum of two rational cubes. This is a cubic analogue of the work of Tian [Ti], which

proves that there are infinitely many congruent numbers having exactly k prime

divisors for any given integer k ≥ 1.

1. Introduction and results

Let n be a cube-free integer and En : x3+y3 = n the elliptic curve defined

over Q. Let LEn(s) be the Hasse-Weil L-function of En and wn ∈ {1,−1}

its root number. Then LEn(s) satisfies the functional equation

N s/2(2π)−sΓ(s)LEn(s) = wnN
(2−s)/2(2π)−(2−s)Γ(2− s)LEn(2− s),

where N is the conductor of En whose divisors are 3 and primes p |n. The

analytic rank of En is the order of vanishing at the central point s = 1

of LEn(s). The functional equation implies that wn = 1 if and only if

the analytic rank of En is even. The Birch and Swinnerton-Dyer(BSD)

conjecture states that the rank of the Mordell-Weil group En(Q) is equal to

the analytic rank of En. So the BSD conjecture implies that if wn = −1,

then n is a sum of two rational cubes.

The root number wn can be computed by the following way, due to Birch

and Stephens [BS],

wn =
∏

p prime

wn(p),

The authors were supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-

2013R1A1A2007694).

1



2 DONGHO BYEON AND KEUNYOUNG JEONG

where for p 6= 3,

wn(p) =

 −1 if p |n and p ≡ 2 (mod 3)

1 otherwise

and for p = 3,

wn(p) =

 −1 if n ≡ 0, ±2, ±4, (mod 9)

1 otherwise.

In [Sa], Satgé proved that n = 2p, where p is a prime congruent to 2 mod

9 (so wn = −1), and also n = 2p2, where p is a prime congruent to 5 mod

9 (so wn = −1), are sums of two rational cubes. Coward [Co] proved that

n = 25p, where p is a prime congruent to 2 mod 9 (so wn = −1), and also

n = 25p2, where p is a prime congruent to 5 mod 9 (so wn = −1), are sums

of two rational cubes. In [DV], Dasgupta and Voight proved that if p is a

prime congruent to 4 or 7 mod 9 (so wp = −1) and 3 is not a cube mod

p, then p is a sum of two rational cubes. We note that there are infinitely

many such p. Here we mention Sylvester’s conjecture which asserts if p is a

prime congruent to 4, 7 or 8 mod 9 (so wp = −1), then p is a sum of two

rational cubes. For more details and history on Sylvester’s conjecture, see

[DV].

In this paper, we prove the following theorem.

Theorem 1.1. For any given integer k ≥ 2 and e ∈ {1,−1}, there are

infinitely many cube-free integers (in fact, square-free integers) n having

exactly k prime divisors such that n is a sum of two rational cubes and

wn = e.

In [Ti], Tian has shown that for any given integer k ≥ 1, there are in-

finitely many square-free positive integers m such that m is a congruent

number and the corresponding elliptic curve E : y2 = x3−m2x has the root

number −1. So Theorem 1.1 for the case wn = −1 is a cubic analogue of

the work of Tian.

On the other hand, Coates and Wiles [CW] proved that if n is a sum of

two rational cubes, than the analytic rank of En is greater than zero. So

we immediately have the following corollary from Theorem 1.1 for the case

wn = 1.
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Corollary 1.2. For any given integer k ≥ 2, there are infinitely many cube-

free integers n having exactly k prime divisors such that the analytic rank

of En is at least 2.

In [Ma], Mai proved that there are infinitely many cube-free integers n

such that the analytic rank of En is at least 2, more precisely, the number

of cube-free integers n ≤ X such that the analytic rank of En is even(i.e.,

wn = 1) and ≥ 2 is at least CX2/3−ε, where ε is arbitrarily small and C is a

positive constant, for X large enough, without consideration of the number

of prime divisors of n.

2. Preliminaries

Let n be a cube-free integer and En : x3 + y3 = n. Then En has the

Weierstrass form E′n : y2 = x3 − 2433n2. We know that all E′n except for

n = ±1 and ±2 have no rational torsion(cf. [Si, Exercises 10.19]). In [Ma,

Lemma 2.1], Mai proved the following lemma.

Lemma 2.1. E′n has integral points if and only if n has one of the following

six forms:

n = ±b(a
2 − b2)
4

or n = ±3a2b− 3b3

24
± a3 − 9ab2

24
for some a, b ∈ Z.

To control the root number wn and the number of prime divisors of n in

Lemma 2.1, we slightly modify the result of Brüdern, Kawada and Wooley

[BKW, Theorem 1], which is a quantitative strengthening of a theorem of

Perelli [Pe].

Lemma 2.2. Let f(x) ∈ Z[x] be a polynomial which has a positive leading

coefficient with degree k. Let A,B be relatively prime odd integers and i, j

positive integers with 0 < i, j < 9 and (i, 9) = (j, 9) = 1. Suppose there is at

least one integer m such that

2f(m) ≡ Ai+Bj (mod 9) and (AB, 2f(m)) = 1.

Let EABijk (N, f) be the number of positive integers n ∈ [1, N ] with 2f(n) ≡

Ai+Bj (mod 9) and (AB, f(n)) = 1 for which the equation 2f(n) = Ap1 +

Bp2 has no solution in primes p1 ≡ i, p2 ≡ j (mod 9). Then there is an
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absolute constant c > 0 such that

EABijk (N, f)�f N
1− c

k ,

so there are infinitely many integers n such that

2f(n) = Ap1 +Bp2,

for some primes p1 ≡ i and p2 ≡ j (mod 9).

Proof. Let N be a large positive integer, δ a sufficiently small positive real

number to be chosen later, X := 2f(N), P := X6δ, Q := X/P and κ := 2−
1
k .

Let A,B be positive odd integers and i, j positive integers with 0 < i, j < 9

and (i, 9) = (j, 9) = 1. We define the exponential sum Si(α) by

Si(α) :=
∑

P<p≤X
p≡i (mod 9)

(log p)e(αp),

where e(αp) := e2παpi and the summation is over primes p with P < p ≤ X

and p ≡ i (mod 9). When T ⊆ [0, 1], we write

rABij(n;T ) :=

∫
T
Si(Aα)Sj(Bα)e(−αn)dα

and rABij(n) := rABij(n; [0, 1]). Then rABij(2f(n)) counts the number of

solutions of the equation 2f(n) = Ap1 + Bp2 in primes p1 ≡ i, p2 ≡ j

(mod 9) with weight log p1 log p2.

Let M ⊂ [0, 1] be the major arc defined by

M =
⋃

0≤a≤q≤P
(a,q)=1

M(q, a),

where

M(q, a) =

{
α ∈ [0, 1] :

∣∣∣∣α− a

q

∣∣∣∣ ≤ P

qX

}
and m ⊂ [0, 1] be the minor arc defined by

m = [0, 1] \M.

First we consider minor arc. Let χ be a Dirichlet character of modu-

lus 9. The orthogonality relations of Dirichlet characters
∑

χ χ̄(i)χ(p) =
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ϕ(9)δ(i, p), where the sum is over all Dirichlet characters of modulus 9, and

δ(i, p) = 1 if p ≡ i (mod 9) and δ(i, p) = 0 if p 6≡ i (mod 9) imply that

Si(Aα) =
∑

P<p≤X

1

ϕ(9)

∑
χ

χ̄(i)χ(p)(log p)e(αAp)

�
∑
χ

∣∣∣∣∣∣
∑

P<p≤X
χ(p)(log p)e(αAp)

∣∣∣∣∣∣ .
From the proof of [Va, Theorem 3.1], we have if (a, q) = 1, q ≤ X and

|α− a/q| ≤ q−2, then∑
P<p≤X

χ(p)(log p)e(αAp)� (logX)4(Xq−1/2 +X4/5 +X1/2q1/2),

so

Si(Aα)� (logX)4(Xq−1/2 +X4/5 +X1/2q1/2).

Using this upper bound and the proof of [BKW, Lemma 1], we have the

following same result for rABij(m) on minor arcs;

There is a positive real number a = a(δ) such that∑
κN<n≤N

|rABij(2f(n);m)| � XN1− a
k . (1)

Now we consider major arc. For a Dirichlet character χ, we define

ψ(x, χ) :=
∑
n≤x

χ(n)Λ(n) and ψ(x, χ, i) :=
∑
n≤x

n≡i (mod 9)

χ(n)Λ(n),

where Λ(n) is the von Mangoldt function which defined as follows;

Λ(n) =

 log p if n = pk,

0 otherwise.

Using the orthogonality relations of Dirichlet characters, we have

ψ(x, χ, i) =
1

ϕ(9)

∑
n≤x

(
∑
χ′

χ̄′(i)χ′(n))χ(n)Λ(n) =
1

ϕ(9)

∑
χ′

χ̄′(i)ψ(x, χ · χ′),

where χ′ varies in the set of Dirichlet characters of modulus 9 and χ·χ′(n) :=

χ(n)χ′(n). From the proof of [Ga, Theorem 7], we have for q ≤ T ≤ x
1
2 ,

ψ(x, χ, i) =
1

ϕ(9)

∑
χ′

χ̄′(i)(δχ·χ′x−
∑
ρ

xρ

ρ
) +O(

x log2 x

T
)



6 DONGHO BYEON AND KEUNYOUNG JEONG

and ∑
q≤P

∑
χ

∗
x+h∑
x

p≡i (mod 9)

χ(p) log p� h(
∑
q≤P

∑
χ

∗
∑
χ′

∑
ρ

xβ−1 +
P 4

T
),

where ρ = β + γi varies in the set of zeros of L(s, χ · χ′) with 0 ≤ Re(ρ) ≤

1, |Im(ρ)| ≤ T and
∑∗ denotes that the sum is taken over all primitive

Dirichlet characters of modulus q. From the proof of [Ga, Theorem 7],

additional computations and the argument below [MV, Lemma 4.3], we

have the following modification of [MV, Lemma 4.3];

For suitable (small) positive absolute constants c1, c2,∑
q≤P

∑
χ

∗max
x≤N

max
h≤N

(h+
N

P
)−1
∣∣∣∣ x∑

x−h
p≡i

(mod 9)

]χ(p) log p

∣∣∣∣� exp(−c1
logN

logP
) (2)

provided exp(log
1
2 N) ≤ P ≤ N c2. Here

∑
] indicates that the term with

q = 1 is to be
x∑

x−h
p≡i (mod 9)

log p−
∑

x−h<n≤x
n>0

n≡i (mod 9)

1

and that if there is an exceptional character χ̃ then the corresponding term

is
x∑

x−h
p≡i (mod 9)

χ̃(p) log p+
∑

x−h<n≤x
n>0

n≡i (mod 9)

nβ̃−1,

where β̃ is the (unique) exceptional zero of L(s, χ̃). If the exceptional char-

acter occurs, the right hand side of (2) may be reduced by a factor of (1 −

β̃) logP .

For a Dirichlet character χ of modulus q, we define

Si(χ, η) :=
∑

P<p≤X
p≡i (mod 9)

(log p)χ(p)e(pη),

and

Ti(η) :=
∑

P<n≤X
n≡i (mod 9)

e(nη), T̃i(η) := −
∑

P<n≤X
n≡i (mod 9)

nβ̃−1e(nη),

where the last one is defined only if there is an exceptional character.
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Let χ0 be the principal character modulo q. Define

Wi(χ, η) :=


Si(χ, η)− Ti(η) if χ = χ0,

Si(χ, η)− T̃i(η) if χ = χ̃χ0,

Si(χ, η) otherwise.

Suppose that a Dirichlet character χ (mod q) is induced by a primitive

character χ∗ (mod r). Put

WA
i (χ) =

( ∫ 1
rQ

− 1
rQ

|Wi(χ,Aη)|2 dη
) 1

2 and WA
i =

∑
q≤P

∑
χ

∗WA
i (χ).

Applying [MV, Lemma 4.2] to the real numbers

un :=

 χ(p) log p if n = Ap, P < p ≤ X, p ≡ i (mod 9),

0 otherwise,

we get

WA
i (χ) � (

∫ 2AX

0

∣∣∣∣ 1

qQ

∑
P<p≤X

x− qQ
2
≤Ap≤x

p≡i (mod 9)

]χ(p) log p

∣∣∣∣2dx)
1
2

� X
1
2 max
x≤2X

max
0<h≤X

(h+
X

P
)−1
∣∣∣∣ x∑

x−h
p≡i

(mod 9)

]χ(p) log p

∣∣∣∣.
Then using the above modification of [MV, Lemma 4.3], we have the follow-

ing modification of [MV, (7.1) and (7.1̃)];

If there is no exceptional character,

WA
i � X

1
2 exp(−c3

logX

logP
),

and if the exceptional character occurs,

WA
i � X

1
2 (1− β̃) logP exp(−c3

logX

logP
).

For α ∈ M(q, a) we write α = a
q + η for (a, q) = 1, − 1

qQ ≤ η < 1
qQ

and q < P . For a character χ of modulus q, let τ(χ) =
∑q

n=1 χ(n)e(nq )

be the Gaussian sum. For integers C,D ∈ {A,B, q, n, 2f(n)}, we define

CD := C
(C,D) . Using arguments in [MV, Section 6], we have

Si(Aα) =
µ(qA)

ϕ(qA)
Ti(Aη) +

1

ϕ(qA)

∑
χ

χ(Aqa)τ(χ̄)Wi(χ,Aη), (3)
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where the sum is over all Dirichlet characters χ of modulus qA, unless there

is an exceptional character of modulus r̃, in which case r̃|qA then we obtain

an additional term
χ̃(Aqa)τ(χ̃χ0)

ϕ(qA)
T̃i(Aη)

on the right hand side of (3).

First we assume that there is no exceptional character. Let n ∈ (κN,N ]

be an integer with 2f(n) ≡ Ai + Bj (mod 9) and (AB, f(n)) = 1. For

simplicity, we define

tAi t
B
j (η) := Ti(Aη)Tj(Bη)e(−2f(n)η),

tAi w
B
j (η) := Ti(Aη)Wj(χ

′, Bη)e(−2f(n)η),

tBj w
A
i (η) := Tj(Bη)Wi(χ,Aη)e(−2f(n)η),

wAi w
B
j (η) := Wi(χ,Aη)Wj(χ

′, Bη)e(−2f(n)η),

where χ and χ′ are characters of modulus of qA and qB, respectively. Then

we have

rABij(2f(n);M)

=
∑
q≤P

µ(qA)µ(qB)

ϕ(qA)ϕ(qB)
cq(−2f(n))

∫ 1
qQ

− 1
qQ

tAi t
B
j (η)dη (4)

+
∑
q≤P

µ(qA)

ϕ(qA)ϕ(qB)

∑
χ′

χ′(Bq)cχ′(−2f(n))τ(χ̄′)

∫ 1
qQ

− 1
qQ

tAi w
B
j (η)dη (5)

+
∑
q≤P

µ(qB)

ϕ(qA)ϕ(qB)

∑
χ

χ(Aq)cχ(−2f(n))τ(χ̄)

∫ 1
qQ

− 1
qQ

tBj w
A
i (η)dη (6)

+
∑
q≤P

1

ϕ(qA)ϕ(qB)
(
∑
χ,χ′

χ(Aq)χ
′(Bq)cχχ′(−2f(n))τ(χ̄)τ(χ̄′)

×
∫ 1

qQ

− 1
qQ

wAi w
B
j (η)dη), (7)

where cq(m) =
∑q

(a,q)=1 e(
am
q ) and c∗(m) :=

∑q
h=1 ∗(h)e(hmq ) (We remark

that h goes from 1 to q though the modulus of ∗ is a divisor of q.).

Using [MV, Lemma 5.5] and arguments in [MV, Section 6], we have

(5) � X
1
2

∑
q≤P

∑
χ′

|µ(qA)χ′(Bq)cχ′(−2f(n))τ(χ̄′)

ϕ(qA)ϕ(qB)
|(
∫ 1

rQ

− 1
rQ

|Wj(χ
′, Bη)|2 dη)

1
2

� X
1
2

∑
q≤P

∑
χ′

|cχ
′(−2f(n))τ(χ̄′)

ϕ(q)2
|(
∫ 1

rQ

− 1
rQ

|Wj(χ
′, Bη)|2 dη)

1
2

� 2f(n)

ϕ(2f(n))
WB
j X

1
2 .
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By the same method, we have

(6)� 2f(n)

ϕ(2f(n))
WA
i X

1
2 and (7)� 2f(n)

ϕ(2f(n))
WA
i W

B
j .

Now we consider the term (4). Assume harmless conditions qQ > 18A and

A ≥ B. Then we have∫ 1
qQ

− 1
qQ

tAi t
B
j (η)dη =

∫ 1
18

− 1
18

tAi t
B
j (η)dη −

∫ 1
18

1
18A

tAi t
B
j (η)dη −

∫ − 1
18A

− 1
18

tAi t
B
j (η)dη

−
∫ 1

18A

1
qQ

tAi t
B
j (η)dη −

∫ − 1
qQ

− 1
18A

tAi t
B
j (η)dη.

By the same argument for [MV, (6.10)], we have∫ 1
18A

1
qQ

tAi t
B
j (η)dη � qQ.

By elementary computation, we have∫ 1
18

− 1
18

tAi t
B
j (η)dη =

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

1

9
=

2f(n)

93AB
+O(P )

and ∫ 1
18

1
18A

tAi t
B
j (η)dη =

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

(
1

18
− 1

18A
) +O(logX)

= (
1

18
− 1

18A
)
2f(n)

92AB
+O(P ).

Thus we have∫ 1
qQ

− 1
qQ

tAi t
B
j (η)dη =

2f(n)

93AB
− 2(

1

18
− 1

18A
)
2f(n)

92AB
+O(qQ).

Using the above estimation for the integral in (4) and arguments for [MV,

(6.12), (6.13), (6.14)], we have the the following estimation for the term (4);

(4) = SA,B(2f(n))
2f(n)

93A2B
+O(X1+δP−1),

where SA,B(n) =
∑∞

q=1
µ(qA)µ(qB)
ϕ(qA)ϕ(qB)cq(−n).
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Finally, combining the above bounds for (5), (6), (7) and the above esti-

mation for (4), we have the following modification of [MV, (6.17)];

rABij(2f(n);M) = SA,B(2f(n))
2f(n)

93A2B
+O(X1+δP−1)

+ O(
2f(n)

ϕ(2f(n))
(WA

i X
1
2 +WB

j X
1
2 +WA

i W
B
j )). (8)

Since A,B and 2f(n) are pairwise relatively prime, we have

SA,B(2f(n)) =
∏
p

(1 +
µ(pA)µ(pB)µ(p(2f(n)))ϕ(p)

ϕ(pA)ϕ(pB)ϕ(p(2f(n)))
)

=
∏

p|AB(2f(n))

(1 +
1

ϕ(p)
)

∏
p-AB(2f(n))

(1− 1

ϕ(p)2
)

and by [BKW, (15)]

SA,B(2f(n)) = cA,BS1,1(2f(n)) ≥ cA,B
2f(n)

ϕ(2f(n))

for a constant cA,B depending only on A, B. From the above modification

of [MV, (7.1)], the third term of the right hand side of (8) is less then
6f(n)

ϕ(2f(n))Xe
− c3

6δ . If we choose a sufficiently small positive real number δ,

then rABij(2f(n);M) ≥ (
cA,B
93A2B

− c4)S(2f(n))(2f(n)). This implies that

rABij(2f(n);M)� X.

Next we assume that there is the exceptional character. Let n ∈ (κN,N ]

be an integer with 2f(n) ≡ Ai + Bj (mod 9) and (AB, f(n)) = 1. For

simplicity, we define

t̃Ai t̃
B
j (η) := T̃i(Aη)T̃j(Bη)e(−2f(n)η),

tAi t̃
B
j (η) := Ti(Aη)T̃j(Bη)e(−2f(n)η),

t̃Ai t
B
j (η) := T̃i(Aη)Tj(Bη)e(−2f(n)η),

t̃Ai w
B
j (η) := T̃i(Aη)Wj(χ

′, Bη)e(−2f(n)η),

t̃Bj w
A
i (η) := T̃j(Bη)Wi(χ,Aη)e(−2f(n)η),
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where χ and χ′ are characters of modulus of qA and qB, respectively. Then

we have the following possible additional terms in rABij(2f(n);M);

∑
q≤P

r̃|qA,qB

τ(χ̃χ0)τ(χ̃χ′0)

ϕ(qA)ϕ(qB)
χ̃(AqBq)cq(−2f(n))

∫ 1
qQ

− 1
qQ

t̃Ai t̃
B
j (η)dη (9)

+
∑
q≤P
r̃|qB

µ(qA)τ(χ̃χ′0)

ϕ(qA)ϕ(qB)
χ̃(Bq)cχ̃χ′

0
(−2f(n))

∫ 1
qQ

− 1
qQ

tAi t̃
B
j (η)dη (10)

+
∑
q≤P
r̃|qA

µ(qB)τ(χ̃χ0)

ϕ(qA)ϕ(qB)
χ̃(Aq)cχ̃χ0(−2f(n))

∫ 1
qQ

− 1
qQ

t̃Ai t
B
j (η))dη (11)

+
∑
q≤P
r̃|qA

χ̃(Bq)τ(χ̃χ0)

ϕ(qA)ϕ(qB)
(
∑
χ

cχ̃χ(−2f(n))τ(χ̄)χ(Aq)

∫ 1
qQ

− 1
qQ

t̃Bj w
A
i (η)dη) (12)

+
∑
q≤P
r̃|qB

χ̃(Aq)τ(χ̃χ′0)

ϕ(qA)ϕ(qB)
(
∑
χ′

cχ̃χ′(−2f(n))τ(χ̄′)χ′(Bq)

∫ 1
qQ

− 1
qQ

t̃Ai w
B
j (η)dη). (13)

By the same arguments for (5) and (6), we have

(12)� 2f(n)

ϕ(2f(n))
WA
i X

1
2 and (13)� 2f(n)

ϕ(2f(n))
WB
j X

1
2 .

Now we consider the first three terms (9), (10), (11). For the integral in

(9), we have

∫ 1
18

1
18A

t̃Ai t̃
B
j (η)dη =

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

(kl)β̃−1(
1

18
− 1

18A
) +O(logX)

and by the same argument for the estimation of the integral in (4), we have

∫ 1
qQ

− 1
qQ

t̃Ai t̃
B
j (η)dη = ĨABij − 2

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

(kl)β̃−1(
1

18
− 1

18A
) +O(qQ),

where

ĨABij :=

∫ 1
18

− 1
18

t̃Ai t̃
B
j (η)dη =

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

(kl)β̃−1(
1

9
).
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Similarly, for the integral in (10), we have

∫ 1
qQ

− 1
qQ

tAi t̃
B
j (η)dη = J̃ABij − 2

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

(l)β̃−1(
1

18
− 1

18A
) +O(qQ),

where J̃ABij :=
∫ 1

18

− 1
18

tAi t̃
B
j (η)dη and for the integral in (11), we have

∫ 1
qQ

− 1
qQ

t̃Ai t
B
j (η)dη = J̃BAji − 2

∑
P<k,l≤X
k≡i,l≡j

Ak+Bl=2f(n)

(k)β̃−1(
1

18
− 1

18A
) +O(qQ),

where J̃BAji :=
∫ 1

18

− 1
18

t̃Ai t
B
j (η)dη.

Using the arguments for [MV, (6.19), (6.1̃6)], we have

(9) + (10) + (11) = S̃A,B(2f(n))
ĨABij
A

+ O(
χ̃(2f(n))2r̃ · 2f(n)X

ϕ(r̃)2ϕ(2f(n))
) +O(X1+δP−1(2f(n), r̃)),

where S̃A,B(n) :=
∞∑
q=1

r̃|qA,qB

τ(χ̃χ0)τ(χ̃χ′0)

ϕ(qA)ϕ(qB)
χ̃(AqBq)cq(−n). Since A, B and

2f(n) are pairwise relatively prime and one of the Gaussian sums in S̃A,B(n)

vanishes when q/r̃ and r̃ are not relatively prime, we have

S̃A,B(2f(n))

=
χ̃(−1)r̃

ϕ(r̃)ϕ(r̃2f(n))

∏
p-r̃
p|AB

(1 +
χ̃(p)

ϕ(p)
)
∏
p-r̃

p|2f(n)

(1 +
1

ϕ(p)
)

∏
p-r̃

p-(2f(n))AB

(1− 1

ϕ(p)2
).

Finally, combining all the above estimations, we have the following mod-

ification of [MV, (6.1̃7)];

rABij(2f(n);M) = SA,B(2f(n))
2f(n)

93A2B
+ S̃A,B(2f(n))

ĨABij
A

+ O(
χ̃(2f(n))2r̃ · 2f(n)X

ϕ(r̃)2ϕ(2f(n))
) +O(X1+δP−1(2f(n), r̃))

+ O(
2f(n)

ϕ(2f(n))
(WA

i X
1
2 +WB

j X
1
2 +WA

i W
B
j )). (14)
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If (2f(n), r̃) = 1, the fourth term of the right hand side of (14) is less then

X1−5δ and

S̃A,B(2f(n))� r̃

ϕ(r̃)2

∏
p-r̃

p|2f(n)

(1 +
1

ϕ(p)
)� r̃ · 2f(n)

ϕ(r̃)2ϕ(2f(n))
= o(1),

so using arguments in [MV, Section 8] and the above modification of [MV,

(7.1̃)], we have rABij(2f(n);M)� X. Since

|S̃A,B(2f(n))| ≤ SA,B(2f(n))
∏
p-r̃
p|AB

χ̃(p)=−1

(
p− 2

p
)

∏
p|r̃

p-2f(n)AB

1

(p− 2)
, (15)

using arguments in [BKW, p.122–123], we have that if 1 < (2f(n), r̃) ≤ Y ,

rABij(2f(n);M)�

 X if P 6= ∅,

XY −
1
2 (logX)−1 if P = ∅,

where P is the set of primes in the products of (15). Finally there are at

most O(N1+εY −1) possible exceptions n with (2f(n), r̃) > Y . Thus we have

the following analogue of [BKW, Lemma 2];

Suppose that Y is a real number with 1 ≤ Y ≤ X
δ
k . Then one has

rABij(2f(n);M)� XY −
1
2 (logX)−1 (16)

for all n ∈ (κN,N ] with 2f(n) ≡ Ai+Bj (mod 9) and (AB, f(n)) = 1 with

the possible exception of O(N1+εY −1) values of n.

We note that if there is at least one integer m such that 2f(m) ≡ Ai+Bj

(mod 9) and (AB, 2f(m)) = 1, the set of n ∈ (κN,N ] with 2f(n) ≡ Ai+Bj

(mod 9) and (AB, f(n)) = 1 has a positive density in the set of n ∈ (κN,N ].

Now Lemma 2.2 follows from (1), (16) and the proof of [BKW, Theorem

1]. �

3. Proof of Theorem 1.1

In this section, for convenience’ sake, we assume that n is a square-free.

However, the method used in this section can easily be modified to cube-free

integers n though it is more complicated to state.
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Lemma 3.1. Let n > 0 be a square-free integer. Then

wn =

 +1 if n ≡ 1, 2, 3 or 5 (mod 9)

−1 if n ≡ 4, 6, 7 or 8 (mod 9).

Proof. Write the prime factorization of n in the form

n = 3α
∏

pi≡1 (mod 3)

pi
∏

qj≡2 (mod 3)

qj ,

where α = 0 or 1 and pi, qj are distinct primes.

Let an be the number of qj ≡ 2 (mod 3). Then the computation of root

number wn of En in Section 1 gives the following condition.

wn = −1 if and only if (i) n ≡ ±1,±3 (mod 9) and an is odd, or

(ii) n ≡ ±2,±4 (mod 9) and an is even.

We note that (
∏
pi≡1 (mod 3) pi

∏
qj≡2 (mod 3) qj) ≡ 2 (mod 3) if and only

if an is odd. Then we have the following table and complete the proof of

the lemma.

n (mod 9) 1 2 3 4 5 6 7 8

an even odd even even odd odd even odd

wn +1 +1 +1 −1 +1 −1 −1 −1

�

Proposition 3.2. For any given k ≥ 2 and r ∈ {1, 2, 4, 5, 7, 8}, there are

infinitely many square-free integer n > 0 having exactly k prime divisors such

that n is a sum of two rational cubes and n ≡ r (mod 9). For r ∈ {3, 6},

the same statement holds for k ≥ 3.

Proof. By Lemma 2.1, we know that for nonzero a, b ∈ Z, 16b6−a2 is a sum

of two rational cubes because b3(16b6 − a2) = − (4b3)(a2−(4b3)2)
4 . Let

A =

l∏
i=1

pi, for fixed primes pi ≡ 1 (mod 9), B = 27,

where l ≥ 0 is a fixed integer (if l = 0, then A = 1).
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We note that b3 ≡ 0 or ±1 (mod 9) for any integer b. Since there is an

integer b such that 8b3 ≡ 8A+ 8B (mod 9) and (AB, 8b3) = 1, Lemma 2.2

ensures that there are infinitely many integers b that satisfy the equation

4b3 =
Ap+Bq

2
,

for some primes p ≡ 8 and q ≡ 8 (mod 9). If p = q, then 8b3 = Ap + 27p,

so 8p2c3 = A + 27 for some positive integer c. Thus there are only finitely

many p, q such that p = q and we may assume p 6= q.

Let a = Ap−Bq
2 ∈ Z. Then 16b6 − a2 = ABpq = 27Apq is a sum of

two rational cubes having exactly (l + 3) prime divisors because p, q - A,B.

Hence Apq is a square-free integer having exactly (l+ 2) prime divisors such

that Apq is sum of two rational cubes and Apq ≡ 1 (mod 9). This proves

the theorem for the case of r = 1. If we set q ≡ 7, 5, 4 and 2 (mod 9), then

the theorem for the cases of r = 2, 4, 5, and 7 follows.

For the case r = 8 and k ≥ 3, set

A =
l∏

i=1

pi, for fixed primes p1 ≡ 2, p2, · · · , pl ≡ 1 (mod 9), B = 27

and let p, q be primes such that p ≡ 5, q ≡ 8 (mod 9). For the case r = 8

and k = 2, set

A = 1, B = 27

and let p, q be primes such that p ≡ 8, q ≡ 1 (mod 9). Then the theorem

for the case r = 8 follows.

For the case r = 3, let

A =

l∏
i=1

pi, for fixed primes pi ≡ 1 (mod 9), B = 81,

where l ≥ 0 is a fixed integer (if l = 0, then A = 1) and let p, q be primes

such that p ≡ 8, q ≡ 8 (mod 9) Then 3Apq is a square-free integer having

exactly (l + 3) prime divisors such that 3Apq is sum of two rational cubes

and 3Apq ≡ 3 (mod 9). This proves the theorem for the case of r = 3.

Finally, if we set q ≡ 7 (mod 9), then the theorem for the case r = 6 follows

and the proof of the theorem is completed. �
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Proof of Theorem 1.1. Lemma 3.1 and Proposition for the case r = 4, 7, 8

implies Theorem 1.1 for the case wn = −1. Lemma 3.1 and Proposition for

the case r = 1, 2, 5 implies Theorem 1.1 for the case wn = 1. 2
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